R Information and Software Technology 44 (2002) 65-75

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

Bases for the development of LAST: a formal method for business
software requirements specification™

Jesds Manuel Almendros-Jiménez®*, Luis Gonzalez-Jiménez®

“Department of Languages and Computation, Universidad de Almeria, E-04120 Almeria, Spain
*Department of Business and Economics, Universidad de La Rioja, E-26004 Logrofio, Spain

Received 17 January 2001; revised 29 October 2001; accepted 30 October 2001

Abstract

This paper proposes a possible approach to IS requirements specification. It relies on the application of standard (i.e. conventional) discrete

mathematics, more precisely, it uses a fairly limited number of concepts from the fields of linear algebra and set theory (hence its name,
LAST). The use of LAST for data definition and query—answer are discussed in some detail, given the data-rich quality of Business IS and the
fact that a solid data-model is therefore essential to their specification. The proposed approach implies integration with other semiformal
specification methods, two of the possibilities being integration with UML—OCL and with the Entity Relationship Model, which are
discussed in this paper. Finally, mapping of LAST specifications to the Relational Model is also addressed; this possibility having an
interest both, for (partial) implementation and for model simulation. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Software engineering; Information systems; Formal methods; UML; Entity relationship model; Relational model

1. Introduction

As indicated in the title, this article conveys information

about a proposed approach for the specification of require-
ments. This approach relies on the use of discrete mathe-
matics and chooses to limit its scope to the Information
Systems (IS) domain. As it seems only fair to give some
justification for the relevance of such undertaking, this
introduction will try and address briefly the following
issues:

#

*

. What is it that makes IS specially relevant and, at the

same time, deserving of specific treatment regarding
requirements analysis and specification?

. Is it sound, meaning effective and efficient, to apply

Formal Methods (FM) in practice?

. At what stage or stages of the project life-cycle are FM

applicable?

. How and why are FM used in combination with existing

semiformal specification methods?

. Why not use one of the already established FM for the

indicated endeavor?

* This a revised and improved version of the paper appeared in Ref. [2].

Corresponding author. Tel.: +34-9500-15677; fax: +34-9412-99393.
E-mail addresses: jalmen@ual.es (J.M. Almendros-Jiménez),

luis.gonzalez@dee.unirioja.es (L. Gonzalez-Jiménez).

There are several factors that make business IS require-

ments specification a very important subject, both from a
practitioner’s and a researcher’s point of view.

e On the demand side, changes in the economic environ-

ment, more concretely, the so-called (economic) globa-
lization, which basically implies the removal of barriers
to trade and investment [31], has led to increased compe-
tition in the marketplace. Simultaneously, Information
and Communication Technologies, as the Internet or
the Enterprise Resource Planning (ERP) systems, have
become part of the basic technology that, being in
principle accessible by any business, no company can
afford to give up altogether, simply because that implies
giving a potential competitive advantage to the other
companies in the same industry.

On the supply side, the Software Industry has been active
in providing increasingly sophisticated solutions to tend
to the resulting needs and even to anticipate new ones. In
this regard, trends in IS development point to web-
enabled ERP + CRM integrated systems, providing
web-based integrated Back and Front Office. ERP systems
[24] are designed to support and automate the business
processes of medium and large companies, including
manufacturing, distribution, personnel, project manage-
ment, payroll, and financials. Customer Relationship

0950-5849/02/$ - see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(01)00209-9

66 J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75

Management (CRM) systems are [24] enterprise-wide
applications that allow companies to manage every
aspect of their relationship with customers. These solu-
tions have very much improved the level of IS-clients
satisfaction. This can arguably be attributed to the fact
that they allow for intense customization.

e There is another emerging factor that will clearly
increase the need for better solutions to IS requirements
specification methods and procedures: ERP and CRM
outsourcing to ASP (application service providers),
which involves mass customization.

Yet, however complex, commercial applications follow a
very specific pattern [4]. They are based around one or more
databases, shared by many users, that reflect the state of
some business domain; function is provided to users to
support business operations; as the later progress, the data-
bases are updated to reflect the past, current and planned
future states. On the other hand, commercial application
development projects frequently take longer and cost more
than their sponsors would wish [4]. An early and influential
field study [9] underscored three major problems affecting
software productivity and quality:

e the thin spread of application domain knowledge,
e fluctuating and conflicting requirements, and
e communication bottlenecks and breakdowns.

In the case of IS, there are organizational, human and
social issues associated with the development of business
SW [37,38].0ne problem area is the ‘uncomfortable join’
between the works of business analysts and programmers
[4]. A similar communication problem seems to exist
between clients and developers [39]. To discuss whether it
is reasonable to expect the use of FM to contribute to the
improvement of the IS development process, specifically
where requirements specification is concerned, it is relevant
to briefly review some recent trends on FM selective and
integrated application.

The need to uncover and correct software defects during
the requirements analysis and design phases of software
development has lead to an interest in Formal Specification
Techniques (FSTs) [28]. FSTs are mathematically based
techniques that provide formal notations for precisely
modeling system properties and a mechanism for analyzing
the resulting specifications. They are used at the require-
ments and design phases primarily to uncover ambiguities,
missing details and inconsistencies in software models.
Their ability to do this stems from their use of precise nota-
tions that can be rigorously analyzed.

Despite the advantages that derive from their application,
the use of FM for SW development is far from widespread
for a number of reasons [6,7,43].

FM complexity may be one of the obstacles to a more
frequent use. On the other hand, FM devised for the speci-
fication and verification of systems, which are both safety-

critical and highly complex, may prove unnecessarily
sophisticated for other types of systems. Thus, recent
years have witnessed an increasing interest on the possibi-
lities of FM, both outside the domain of critical systems, and
as specification, rather than verification, tools [7]. In addi-
tion, more domain-focused use of FM may reduce the level
of complexity that FM application involves. VDM has been
applied outside the critical sector; for instance, by Baan
Front Office Systems for the development of a general
tool—SalesPlus—for the configuration of services and
products, and by GAO (Germany) for a Banknote proces-
sing system.

Another problem arises from the understandable reluc-
tance on the part of SW engineers and the companies they
work for to give up long established semiformal techniques
at which they excel. It is quite possible that an evolutionary
change [6], where semi formal methods and techniques are
combined with formal ones, or where FM are used selec-
tively, at different stages or for specific purposes, is likelier
to be adopted. A compromise of sorts that some FM advo-
cates have taken to in recent years in different ways.

FM may be applied at different stages of the development
process. Wordsworth’s [43] discussion is illuminating on
this regard, on how FM may play a role in different stages
of the project life-cycle. However, selective use of FM tends
to focus on requirements specification [3,30]. This is what the
so-called lightweight formal modeling [1,11,22,26,27,35]
does. Under this approach, FM are basically used, in the
early stages of the software development cycle, as a flaw-
detector and, capitalizing on the intrinsic FM abstraction, as
a means of reducing complexity and improving the under-
standing of requirements by the development team. Verifica-
tion properties are sacrificed, but it has been contended
[21,37] that formal specifications may in fact be valuable
independently of their use for program verification. Light-
weight modeling has been applied to the modeling of EDI
applications [19] in Object-Z [10,38] and in FOOM metho-
dology [14], which combines formal modeling with less-
than-formal specifications in MOSES graphic language
[40]. Other approaches have used the formal language
VDM++ combined with UML-style graphical interfaces
[32].

The integrative approach [8,42] to the use of FM is
equally consistent with the purpose of making a selective
use of them. Clarke and Wing [8] argue that FM can
complement less-than-formal specifications to cover the
whole system development process. They could be used
not instead of, but in addition to, informal methods. It is
specially recommended to use FM for requirements speci-
fication [41,42].

Integration of FM with other methods has several advan-
tages [5,16,18], one of them being that it improves the
chances of FM being adopted by industry. The lack of
commercial success for formal methods, especially in
non-critical systems development, is partly explained by
common misconceptions [5,21], but a major factor is the

J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75 67

lack of engineering context for formal approaches [25,34].
A key realization is that a practical development modeling
and analysis approach requires (1) a judicious mixture of
formal and informal techniques [15], and (2) a set of inte-
grated tools supporting the construction, analysis, and trans-
formation of software models, and the linking of software
models across development phases (traceability).

Integrated methods were motivated by a wish to counter
fear of formal methods in the industry community. There are
two distinct approaches:

e The predominant approach takes a structured specifica-
tion and applies a systematic, perhaps automated, trans-
lation, based on a formal definition of the syntax and
semantics of the notations. This approach has been
applied to a variety of structured methods, using various
formal notations [17]. Recently, research has focused on
the formalization of UML syntax and semantics [12].

e The alternative is to treat the formal and various struc-
tured models as overlapping views, none of which is a
complete representation of the system. The approach is
favored by the SAZ project [36], and also by works on
OMT/UML and B [13]. It is most relevant where the
system requirements are incomplete, or the specification
evolves during the development of the formal descrip-
tion. The approach exploits the formalization process, i.e.
the precision of thinking required to construct formal
models, to clarify system details.

The second approach does not presume a correct or
consistent set of structured models. Rather, the error and
inconsistencies of the structured models motivate the
review. The result is greater understanding of the system
specified, rather than a precise representation of the struc-
tured models.

However, selective and/or combined use of FM is not the
sole condition for their industrial application. Most of the
projects discussed in Ref. [23], for instance, place great
emphasis on tool support. This is by no means coincidental,
but rather follows a trend, which is expected to result in
integrated workbenches to support formal specification,
just as CASE workbenches support system development
using more traditional structured methods. A range of
basic tools are now widely available, many of them in the
public domain. For example, for support using the Z nota-
tion, ZTC, fuZZ, and CADiZ. The Mural system provides
support for the construction of VDM specifications and
refinements and IFAD’s VDM-SL Toolbox is a set of
tools which supports formal development in draft standard
VDM-SL. The B-toolkit from B-Core (UK) Ltd, is a set of
integrated tools which augments Abrial’s B-Method for
formal software development by addressing industrial
needs in the development process.

This paper contends that an approach is possible to the
use of FM for IS requirements specification that is cost-
efficient and, and the same time, may contribute to the

improvement of the quality of IS requirements. Along the
lines mentioned in Ref. [6], the technical, social and
economic contexts of the IS application domain must be
brought to bear on that effort.

It is equally desirable to sacrifice whenever is possible,
logical completeness to applicability, tractability and
comprehensibility [6]. Thus, the proposed method should
not be more complex than strictly required and, as far as
possible, should make the most of the common ground that
business analysts, software engineers, and management
experts may share. When it comes to providing an interface
among professionals with different fields of expertise, it
would seem an step in the right direction to use a well
established formal notation, which is more or less readily
available in the background of these professionals: (elemen-
tary) discrete mathematics. The use of standard (i.e. conven-
tional) mathematical notation seems therefore advisable
and, in the view of this paper, sufficient for the stated
purposes. Though there are alternatives to sharing a
common language, if that may be made possible without
impairment of other aspects of the development process, it
cannot but be accepted as a desirable property of a method.
Indeed, the need of an interface between the different
project stakeholders is self-evident [29]. That does not
necessarily imply that all of them need communicate
using formal specifications, but these may provide precision
when and where that is desirable.

This paper being a report on the advance of a particular
line of research [2,20], it cannot cover all the aspects of the
requirements analysis that could be addressed using the
proposed method. Given the central role that information
modeling plays in IS development [33], it will focus on
data modeling and query—answer definition. Section 2
addresses the use of LAST for these tasks. Section 3 deals
with the mapping of the formal specifications thus obtained
to UML—-OCL. Finally, in Section 4, correspondence with
E/R Diagrams and mapping to the Relational Model are
briefly discussed.

2. IS requirements specification with LAST: a sample

LAST is an attempt to build a formal method, specific to
IS requirements definition, that is not more complex than
strictly necessary. Consistently with this purpose, a very
limited number of fairly accessible mathematical tools
will be necessary: regular mathematical notation, boolean
operators, basic set theory, and a few elements of linear
algebra: vector, vector-entry and coordinate function, i.e.
a function that acts on a vector V = (v, v,, ..., v,,), returning
the designated vector-entry:)?i(V) =v;.

2.1. Data definition with LAST

LAST’s two basic conceptual constructs for data model-
ing are the set of transactions and the set of categories. For
each (business) transaction type and for each category type,

68 J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75

the specification will define a (universal) set representing all
the valid instances of the type that may be stored in the DB
of the specified IS at any given moment. A set definition will
establish:

e Which type (of either transaction or category) does the
set represent, and notation for the set:

Uy = {name of the type} = {X}

where X (in upper case) designates the associated vector
type. The later may adopt one of two forms:

« fixed length vectors: X = (ey,...,e,), where m is a
constant; or
« variable length vectors:

X = (l’ll, ""hm’ll,l""’ll,n’"'?lp,l’ ""lp,n)

where m and n are constants, and p is a variable. In addi-
tion, it is adopted the convention: p = h,,; that is, the last
entry in the section of the vector that cannot be repeated,
henceforth referred to as the heading, indicates the
number of lines contained in an instance of the vector;
a line being a group of entries which is or may be repeated
in different instances of a variable-length vector type. As
a result of said convention, it holds for this second vector
form that: |X| = m + n-h,,.

Transaction types, where binary relationships with 1:n
mappings are pervasive, will be associated with variable
length vectors; whereas in the case of categories, associated
vector types will have a fixed length.

e The attributes of the type (of transaction or category),
and, for each of them: which entry in the associated
vector represents its value, and the set of valid values
of such entry. When defining the later, both entity integ-
rity and referential constraints, plus the minimum and,
where applicable, the maximum number of lines (only for
transaction types), have to be taken into account. In all
cases, the set of valid values of an entry will be a subset,
proper or not, of a data type. This constraint will be
implicit for entries representing foreign keys. By conven-
tion, data types will necessarily be linearly ordered sets
((V(a,b) € X:a = bV b= a), where X is the data type.
For their representation, conventional mathematical
notation will be used if available (in the case of sets of
numbers: N, Z *, 0 * etc.); otherwise, an underlined word
or phrase, clearly identifying the data type will be used,

e.g. strings.

For instance, the following would be the specification of
the type ‘sales order’.
Transaction type: sales order

Ur = {sales_orders}

= (D,N,Z,S,C,R,II,QI,PI,...,Ir,Qr,Pr,...,IR,QR,PR)}

where D is the date of the transaction; N, the (reference)
number of the transaction; Z, the sales region; S, the sales
person; C, the customer; R, the number of lines (these six
vector-entries being the heading in this case); and for every
r € [1,R], the triple: I, = item, Q, = quantity and P, = price;
which constitute a line.

Note that the length of a member of this set is: [T| = 6 +
3-R(T). Obviously, the number and meaning of the entries
making up the heading or belonging to each line will be
different for each defined type.

Let us assume that, in the case of the running example, the
following holds

e Sales orders are to be identified by their date and refer-
ence number.

e The number of items in a sales order may range from 1 to
100.

¢ Quantities and prices have to be positive numbers with
two decimal places.

o Attributes Z, S, C and [are enumerated types and, at the
same time, are relevant for classification purposes, so that
a category type will be defined for each of them. In
addition, suppose that every category type that will be
defined in the context of the running example will have a
single key or identifier. In such case, the following
convention may be adopted: the first entry of a vector
type associated to a category type is the identifier of the
category and will be represented by the letter K. There-
fore, if X is a category type, the following will necessarily
hold:

VX, X' €Uy KX)=KX) o X=X

o Finally, as most if not all IS include time limits for trans-
action-data writing and, unless the database is perpetual,
for retrieval as well, the system database will contain
transaction data only for the period [p,7] (i.e. VT €
Ur, D(T) € [p, 7]) while [o, 7], 0 C [p, 7], will be the
time interval for which transaction data are allowed to
be entered by the end-user.

Considering all of the above, the set of valid values for
each of the entries in the vector type T will be:

1. D(T) € {x € Dates | p = x 2 7};

2.N(T)€Z" —{NT")|T' € Up, T' # T and D(T") =
DI

.R(T) e {x€Z+lxs 100};

4.Yr € [1,R()]: O(T),P(T) E {x E Q" |xx 10> €
VARY -

W

J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75 69

5. (T) € {K(2)| Z € Uy}, 3(T) € (K(S)| S € Us),
C(T) € {K(C)|C € Uc}, and Vr € [1,R] : I(T) €
(K |1 € Uy}

Note that entity integrity is guaranteed by item 2 above,
because the definition of the set of valid values implies that:
YT,T' € Uy : (I(T),N(T)) = (D(T,N(T")) T =T".
As regards referential constraints, they are dealt with in
item 5.

By way of illustration of the procedure for category
types, let us now define the category items. In this case,
the following assumptions (which will be client’s
requirements in practice) are made:

e Each item will be identified by a reference code, the
form of which has not been as yet specified.

e The database will contain a short description of each
item.

e Quantities, prices and average costs have to be posi-
tive numbers with two decimal places.

Category type: item
U = {items} = {I = (K,D,Q,P,C)}

where K is the item reference code; D, the description
of the item; Q, the quantity on hand; P, the current
selling price; and C is the average cost (per unit) of
the stock on hand.

The sets of valid values will be:

1. K(I) € Item_Codes — {K(I') | I' € U, I' # I};
2. Q(I) S Datgs; and
3. 0(), P(), CA) € {(x€ Q" [xx 10> € Z7}.

To close this subsection, there are two issues that are
worth considering:

e Transactions will necessarily have, among their attri-
butes, their date. In addition, it is customary in busi-
ness to number transactions sequentially. When there
are (rather uncommon) exceptions to this, the time of
the transaction accompanies the date. This fact
considered, it does not seem detrimental to the gener-
ality of the method to establish the following general
restriction for modeling purposes:

o If the transaction type includes date and number
among its attributes, then, the first two entries of
the associated vector type will stand for the values
of these two attributes, and they will constitute the
identifier of the transaction.

o Otherwise, the first two entries will represent the
date and the time of the transaction, these pair of
vector entries forming the identifier of the transac-
tion.

e As regards categories, it will be more often than not that
there will be a identifying code to start with. If that is not
the case, instances of a category may always be sequen-

tially numbered. Therefore, it seems equally unrestrictive
to the generality of the method to establish as a general
constraint the assumption made in above example. That
is, the first entry of a vector type associated with a
category type will always represent its identifier.

2.2. Database-query (reporting) specification with LAST

2.2.1. Non-aggregated reports

These reports are the output of what is commonly referred
to as on-line inquiry. They will consist in (linearly) ordered
lists of transactions or categories that verify certain condi-
tions. The specification must establish:

e Notation and description of the parameters of the query
that the end-user will be asked to enter.

e The constraints on those parameters; i.e. definition of
their valid values.

e Set-builder expression of the set of transactions or cate-
gories that verify the search and retrieval criteria for the
values of the query parameters.

e Set-builder expression of the ordered set.

An instance of specification of this type of report is
provided below.

Report description: list of the sales orders received in a
particular sales region, between two specified dates, ordered
by date, the number being the secondary criterion.

1. Query parameters: k is the sales region identifier; a, the
starting date; and b is the closing date.

2. Constraints on the parameters: [a,b] C [p, 7], and AZ €
U, | K(Z) = k.

3. Search and retrieval:
la, b], Z(T) = k}.

4. Sorting: Ord Ly = {T; : i=1,2,...,Card L7}, such that:
T; < T; < D(T)) < D(T)) v (IXT;) = D(T)) A N(T}) <
NT)).

Ly ={T|T € Up,D(T) €

2.2.2. Aggregated reports
These are relatively complex reports. Their specification
will consist in:

e Notation and description of the query parameters.

e Constraints on above said parameters.

e Set-builder expression of the set of strings of vector
entries that verify the search and retrieval criteria for
the values of the query parameters.

e Set-builder expression of the classified set.

e Set-builder expression of the set of report components,
which will be a function of the values of one or more
vector entries of the elements in the classified set.

e Set-builder expression of the ordered set.

For instance, a report disclosing the sales of each item in

70 J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75

each sales-region, for a given period [a,b], would be
specified as follows.

Report description: breakdown, by item and sales region,
of the sales orders received in a given period.

1. Query parameters: a is the starting date; and b is the
closing date.

2. Constraints on the parameters: [a, b] C [p, T].

3. Search and retrieval: Ly={S=(Z,1,0,P)=
(Z(TD),1(T), 0.(T), P.D)) | T € U, D(T) € la,b],r €
[1,R(T)]}

4. Classification. Prior to aggregation, elements in Lg have
to be classified, according with the two established
criteria: sales-region (Z) and stock-item (I,). The result
may be described as a set, X, of Card U;X Card U,
subsets of Lg:

X = {X,-J ri=1,...,Card Up;j = 1,...,Card Uy}

such that X;; = {S € L¢|Z(S) = K(Z) and I(S) = K(1))},
where Z; € Uz and I; € U

5. Aggregation. In this case, it is necessary to compute a
report-component, Y;;, for every element of X:

0, Xi ;= d)
Vi=1 S 0s)PG). X, # 6
SEX;;

i=1,...,Card U;, j=1,...,Card U,

6. Sorting. Assuming the following disclosure (Table 6)

The set Y = {Yl-J- ci=1,...,Card Uy;j = 1,...,Card U, }
would be have to be ordered as follows:

OrdY = {Y, :k=1,...,Card U|Y; < Y; & K(I,) < K(I))}

where
Yy = (Vi 1= 1,....,Card U|Y,,; < Yi; © K(Z) < K(Z))}

where n = card Uy and m = card U,

Note that if the criteria for classification, aggregation and
sorting are not strictly based on defined categories, the
cardinals (Card) used to establish the upper limits of
enumerations making part of the corresponding specifica-
tion, would not be cardinals of sets of categories, but those
of subsets (proper or not) of the later.

3. LAST-UML/OCL correspondence

This section describes the correspondence between LAST
and UML-OCL. Data definition with LAST is translated
into a class diagram where classes and associations repre-
sent sets of transactions and categories.

Table 1
Item Sales region

Z . V/ e Z,
I Y1, Yy Yin
:Ii Y Y:] Yin
I, Yo Y Yo

Table 1 shows translation for the running example, where
the association Sales_Orders represents the set of transac-
tions Uy each one with a Heading and a set of Lines. Attri-
butes D, N, R, Q and P have an attribute associated in the
relevant class, typed in the corresponding UML pre-defined
data types. According to the referential constraints (case (5)
of the LAST specification of Uy) attributes Z, S, C and I are
UML associations with the element of the corresponding
category (in the table the associations Z and [are the only
shown). The transaction-lines cardinality can be expressed
through an OCL class constraint (i.e. class invariant):
self.sales_orders — forall(s|s.lines—
size=s.R).

The correspondence in UML of a category type is also a
UML class (Items for elements of U; and Sales_Regions for
elements of Uy, similarly for U¢ and Us).

With respect to entity integrity some of them are
expressed by means of qualified associations, such is the
case of the key D and N for Sales_Orders (representing
(2) of the LAST specification of Uy) and the key K in
Items and Sales_Regions sets, representing the former, the
case (1) in the LAST specification of U,.

The set of valid values for attributes can be also described
by means of OCL constraints, for example in the LAST
specification of Uy, (1) can be written as
self.sales_orders—>forall(s|p =s.D and
s.D=r17),(3)is expressed as self.sales_orders —
forall(s|0 =s.Rand s.R=100), and similarly for
4).

With respect to the reports description, the combination
of UML and OCL makes possible to write pre- and post-
conditions for methods of the relevant class. For non-aggre-
gated reports the query parameters are formal parameters in
the method implementing the report, and the constraints on
the parameters and the search and retrieval specification
are expressed by means of a OCL pre-(respectively post-)
condition.

In some cases, reports can be stored in auxiliary data
structures which can be designed in UML and the sorting
is expressed by means of a {ordered} UML clause and the
use of OCL type sequence in the post-condition. Table 2
(partially) shows this structure for the running example and
the report can be specified as follows:

+ sales_by _region(ina: date, inb: date,
in k: Region_ Codes, out Reportl:

J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75 71

Table 2
Data definition with UML

Sales

< +Orders_by_Region() >
+ltems_and_Regions()

0.1 Sales_Orders 0.1 Sales_Regions
N - |—K—|
Heading 2 Region
+D: Dates +K: Region_Codes
+N: Integer
+R: Integer 1
0.1 Items
g
item 1.* | Lines
+K: Item_Codes
+D: Dates . Line
::3' ::;' +Q: Real
+C.' Real +P: Real
: I
TReportl) (Reportl.elements—at(i).D=
pre: p=aanda=bandb=r71 Reportl.elements —at(j) .D and
and self.sales_regions— exists (r|r K= Reportl.elements —at (i) .N<
k). Reportl.elements —at(j) .N)

post:
% Search and Retrieval:
Reportl.elements — asSet () =

self.sales_orders—select(a=Dand

D=bandZ.K=k) and
% Sorting:

Set{l..Reportl.elements— size} —

forall (i

Set{l..Reportl.elements — size} —

forall (3|
(Reportl.elements —at(i).D<
Reportl.elements —at(j).D) or

Table 3
Non-aggregated reports

implies i<3))

For aggregated reports, search and retrieval specification
and sorting criteria are expressed likewise, but in this case,
classification, aggregation processes have to be considered as
well. In most of cases, the entire process can be splited, and
consider on one hand, search and retrieval and other hand
aggregation, classification and sorting. Such is the case of
the running example, where we can consider a private method
for search and retrieval and a public method implementing the
remaining work. The report structure, as in the case of non-
aggregated report, may be represented using a data structure,

{ordered}
Elements Heading Lines Line
TReportl +D: Dates +Q: Real
K> +N: Integer (——+P: Real
* +R: Integer 1.7

72 J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75

Table 4
Auxiliary data structure

Region_Item
Elements —=
TAuxiliar +K1: Region_Codes
+K2: Item_Codes
= |[+Q: Real

+P: Real

but in addition search and retrieval can be implemented in an
auxiliary data structure. Tables 3 and 4 show these structures
for the running example, where the output table of the report is
represented by means of a association class associating a value
Y for each item and each region. The auxiliary structure is used
to store LS as is defined in Section 2.2.2. The methods imple-
menting the report can be specified as follows:

-search_dates(in a: date, in b: date, out
LS: TAuxiliar)

pre: p=aanda=bandb=r7

post:

LS.elements =self.sales_orders—
collect(z.K,lines—collect(I.K,Q,P)
|]a=DandD=bh)

Taking LS as input the following method computes
the aggregated report in the data structure described in
Table 4.

+ items_and _regions (in a: date, in b:
date, 1in LS: TAuxiliar, out Report2:
TReport2)

pre: p=aanda=bandb=r7

post:

% Classification and Aggregation
Report2.items — asSet () =self.items and
Report2.items — forall (i]i.regions —
asSet () =self.sales_regions) and
Set{l..self.items—size} —

forall (i

Set{l..self.sales_regions —size}—
forall (|

Report2.items — at (i) .regions—

at(j) .table.Y=LS.elements —
collect(P*Q|

Kl =Report2.items—at (i) .K and

K2 =Report2.items—at (i) .regions—
at(j) .K) — sum)) and

% Sorting

Set{l..self.items—size} — forall (i]
Set{l..self.items —size} — forall (j]
Report2.items—at (i) .K<
Reports.items—at(j).K implies i<3j))
and

Set{l..self.items —size}— forall (i|
Set{l..self.sales_regions — size} —
forall (7|

Set{l..self.sales_regions— size} —
forall (k

Report2.items —at (i) .regions —

at(j) .K<

Report2.items —at (i) .regions — at (k) .K
implies j<k)))

The correspondences between LAST and UML for the
treatment of other IS components should not differ substan-
tially from the ones addressed above.

4. LAST-ER/Relational Model correspondence

This section describes the correspondence between LAST
and the Entity Relationship and how to implement them into
the Relational Model.

4.1. AST and the Entity Relationship Model correspondence

Some of the elements of the Data definition with LAST are
translated into Entity Sets and Relationships in the ER model.

In the case of transaction types (of non-fixed length)
headings and lines become entities while transactions
must be represented by means of relationships.

Table 5 shows translation for the running example, where
the entity Heading represents each heading of the set of
transactions (Uy), Item (respective Region) is an entity
representing the sets of items (U,) (respectively the sets of
sales regions (Uz)), and Lines represents Ur.

The referential constraints are represented by means of
relationships. In the table we have considered the relation-
ships Lines and Sales_Regions associating each line to an
item and each heading to a sales region. In addition, it
should be considered two additional relations one for each
attribute S and C.

With respect to the entity integrities, they are expressed
by means of keys in the ER diagram, for instance, D and N
for headings and K for items and sales regions.

4.2. LAST and the Relational Model mapping

Some of the elements of a Data definition with LAST
cannot be expressed in the ER model. For instance, time
limits constraints will be added to the relational modeling.
For instance, the constraint D(T) € {x € Dateslp = x = 1}
is added in the check clause of the create table SQL state-
ment, when the relational model is considered in our
running example, as follows:

CREATE TABLE HEADING
(D DATE NOT NULL,
N NUMBER NOT NULL,

J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75 73

Table 5
Aggregated report
{ordered} {ordered}
Item
Items |+K: ltem_Codes Regions -
TReport2 +D: Dates Region
: . |+Q:Real +K: Region_Codes
+P: Real I *
+C: Real I
I
1

Item.Table

+¥Y: Real

R NUMBER NOT NULL)
PRIMARY KEY (D, N)
CHECK RHO <D AND D < TAU.

Similarly for the constraint over R. In the relational
modeling, the relationships become tables as usual, for
instance, Lines, and similarly Sales_Regions, becomes a
table using two foreign keys as follows:

CREATE TABLE LINES

(D DATE NOT NULL, N NUMBER NOT NULL,
K NUMBER NOT NULL, P NUMBER NOT NULL,
QO NUMBER NOT NULL)

PRIMARY KEY (D, N, K)

FOREIGN KEY (D, N, K)

REFERENCES HEADING (D, N) , ITEM(K)
CHECK RHO < =D AND D < =TAU.

Finally, each category type is represented by a table:-
CREATE TABLE ITEM

(K NUMBER NOT NULL,
D DATE NOT NULL,

Q NUMBER NOT NULL,
P NUMBER NOT NULL,
C NUMBER NOT NULL)
PRIMARY KEY K.

Reports in the LAST specifications can be defined in
SQL. For non-aggregated reports, search and retrieval speci-
fication and sorting criteria are specified by means of the
SQL SELECT together with the ORDER BY statement, for
instance in our running example, the non-aggregated report
can be specified as follows:

SELECT D,N,S,C,LINES.K,SALES_REGIONS.
K,Q0,P

FROM HEADING, LINES, SALES_REGIONS,
SALES_PERSONS, CUSTOMERS WHERE
HEADING.D =LINES.D AND

HEADING.N = LINES.N AND

HEADING.D = SALES_REGIONS.D AND
HEADING.N = SALES_REGIONS.N AND. . .AND
a < = HEADING.D AND HEADING.D < =b AND
SALES_REGIONS.K < =k

ORDER BY HEADING.D ASC, HEADING.N ASC.

For aggregated reports, search and retrieval specification
and sorting criteria are expressed likewise, but in this case,
classification and aggregation processes have to be consid-
ered as well. In this case, search and retrieval specification is
implemented as a SQL view, sorting by means of the
ORDER BY clause, classification using the GROUPED
BY clause and aggregation using derived attributes. In our
running example, the report disclosing of the weight of each
item in the sales of each sales-region, for a given period
[a, b], would be specified as follows:

CREATE VIEW LS AS
SELECT Z AS
LINES.K,Q, P

SALES_REGIONS.K, I AS

Table 6
Data definition with ER

REGION

>

ITEM

74

J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75

FROM HEADING, LINES, SALES_REGIONS WHERE
HEADING.D = LINES.D AND

HEADING.N = LINES.N AND

HEADING.D = SALES_REGIONS.D AND
HEADING.N = SALES_REGIONS.N AND

a < HEADING.D AND HEADING.D < b.

Let remark us that this view is corresponded with LS as

was defined in Section 2.2.2. The output table can be
described with the SELECT clause over the view LS.SE-
LECT Z, I, SUM-IJ AS SUM(Q*P)

FROM LS
GROUPED BY Z, I
ORDER BY Z ASC, I ASC.

The correspondences between LAST and ER and Rela-

tional Model for the treatment of other IS components
should not differ substantially from the ones addressed
above.

5.

Summary and directions for future research

This paper has described the basics of a Formal Method

(LAST) that uses elements of linear algebra and set theory
for IS-specification. There is plenty of work that needs to be
done to make LAST a fully fledged formal method, thus
making full use of its potential expressiveness, and to
make it viable as a professional SW specification tool, so
that it may have a positive impact on [S-development prac-
tice. Among others, the following tasks are necessary:

definition of a procedure for non-ambiguity, consistence
and completeness checking of specifications written in
LAST;

development of adequate CASE tools that would include
LAST user-interfaces and translators from LAST to
specific architectures.

References

[1] S. Agerholm, P.G. Larsen, A light weight approach to formal meth-

[2

ods, Proceedings of the International Workshop on Current Trends in
Applied Formal Methods, LNCS 1641 Springer, Berlin, 1999, pp.
168—183.

J.M. Almendros-Jiménez, L. Gonzalez, The LAST Project: develop-
ment of a formal method for IS-specification and of a CASE-tool for
IS-design, Proceedings of the Asia-Pacific Software Engineering
Conference, APSEC’00, IEEE Computer Society Press, Silver
Spring, MD, 2000 pp. 54-61.

—

[3] D.M. Berry, Formal methods: the very idea some thoughts about why

[4

they work when they work, Electronic Notes in Theoretical Computer
Science (2000) 25.

D. Bevington, Technical note—business function specification of
commercial applications, IBM Systems Journal 39 (2) (2000) 315-
33s.

=

(5]
(6]
(7]
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]

[26]

J.P. Bowen, M.G. Hinchey, Seven more myths of formal methods,
IEEE Software 12 (4) (1995) 34—-41.

M. Broy, Software technology—formal methods and scientific foun-
dations, Information and Software Technology 41 (1999) 947-950.
R. Butler, C. Holloway, Impediments to industrial use of formal
methods, IEEE Computer (1996) 25-26.

E.M. Clarke, J.M. Wing, Formal methods: state of the art and future
directions, ACM Computing Surveys 28 (4) (1996) 626—643.

B. Curtis, H. Krasner, N. Iscoe, A field study of the software design
process for large systems, Communications of the ACM 31 (11)
(1988) 1268-1287.

R. Duke, G. Rose, Formal Object-Oriented Specification Using
Object-Z, Macmillan, New York, 2000.

S. Easterbrook, R.R. Lutz, R. Covington, J.C. Kelly, Y. Ampo, D.
Hamilton, Experiences using lightweight formal methods for require-
ments modelling, [EEE Transactions on Software Engineering 24 (1)
(1998) 1-11.

A. Evans, R.B. France, K. Lano, B. Rumpe, Developing the UML as a
formal modelling notation, Proceedings of the Unified Modelling
Language, UML’98, LNCS 1618, Springer, Berlin, 1999 pp. 336—
348.

P. Facon, R. Laleau, H.P. Nguyen, The invoicing system problem:
from OMT diagrams to B specifications. Proceedings of the Interna-
tional Workshop on Comparing Systems Specification Techniques,
France, IRIN, 1998.

D.C. Fowler, Formal methods in a commercial information systems
setting: the FOOM methodology. PhD Thesis, Centre for Information
Systems Research, Swinburne University of Technology, Australia,
1996.

R.B. France, J.-M. Bruel, M. Larrondo-Petrie, An integrated object-
oriented and formal modeling environment, Object-Oriented
Programming 10 (7) (1997) 25-34.

R.B. France, J.-M. Bruel, M. Larrondo-Petrie, E. Grant, Rigorous
object-oriented modeling: integrating formal and informal notations,
Proceedings of the Algebraic and Software Technology, AMAST 97,
LNCS 1349 1997, pp. 216-230.

R.B. France, M. Larrondo-Petrie, A two-dimensional view of inte-
grated formal and informal specification techniques, Proceedings of
the International Conference of Z Users, LNCS 967 Springer, Berlin,
1995, pp. 434-448.

R.B. France, R. Busser, M. Boughdadi, Incorporating a Formal
Design Technique in an Industrial Setting, Proceedings of the Ninth
International Symposium on Software Reliability Engineering
(ISSRE98), IEEE Press, New York, 1998.

R.D. Galliers, P.M.C. Swatman, P.A. Swatman, Strategic information
systems planning: deriving comparative advantage from EDI, Infor-
mation Technology 10 (1995) 149-157.

L. Gonzalez, C. Ruiz, Linear algebra and sets theory (LAST)-based
formal modeling for IS client-specification, Proceedings of the Pacific
Asia Conference on Information Systems, Hong Kong, 2000, pp.
798-817.

A. Hall, Seven myths of formal methods, IEEE Software 7 (1990) 11—
19.

D. Hamilton, R. Covington, J.C. Kelly, Experience in applying formal
methods to the analysis of software and system requirements,
Proceedings of the Workshop on Industrial-Strength Formal Specifi-
cation Techniques, IEEE Computer Society Press, Silver Spring, MD,
1995 pp. 30-43.

M.G. Hinchey, J.P. Bowen, Applications of Formal Methods,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

D. Howe (Ed.), The free on-line dictionary of computing, http:/
www.foldoc.org.

M. Jackson, Formal methods and traditional engineering, Systems and
Software 40 (3) (1998) 191-194.

D. Jackson, J. Wing, Lightweight formal methods, IEEE Computer 29
(4) (1996) 22-23.

J.M. Almendros-Jiménez, L. Gonzdlez-Jiménez / Information and Software Technology 44 (2002) 65-75 75

[27] C.B. Jones, A rigorous approach to formal methods, IEEE Computer
29 (4) (1996) 20-21.

[28] P.G. Larsen, J. Fitzgerald, T. Brookes, Applying formal specification
in industry, IEEE Software 13 (7) (1996) 48-56.

[29] A. van. Lamsweerde, Requirements engineering in the year 00: a
research perspective, Invited Paper of the 22nd International Confer-
ence on Software Engineering (2000) 5-19.

[30] A. van Lamsweerde, Formal specification: a roadmap, in: A. Finkel-
stein (Ed.), The Future of Software Engineering, ACM, New York,
2000, pp. 147-159.

[31] The millennium forum, Final discussion paper on: facing the chal-
lenges of globalisation: equity, justice and diversity, http://www.
millenniumforum.org, 2000.

[32] P. Mukherjee, Computer-aided validation of formal specifications,
Software Engineering (1995) 133-140.

[33] J. Mylopoulos, Information modeling in the time of the revolution,
Information Systems 23 (3/4) (1998) 127-155.

[34] D.L. Parnas, Formal methods technology transfer will fail, Systems
and Software 40 (3) (1998) 195-198.

[35] F. Polack, A case study using lightweight formalism to review an
information system specification, Software Practice and Experience
31 (8) (2001) 57-80.

[36] F. Polack, M. Whiston, K.C. Mander, The SAZ project: integrating

SSADM and Z, Proceedings of Formal Methods Europe 93: Industrial
Strength Formal Methods, LNCS 670, Springer, Berlin, 1993 pp.
541-557.

[37] P.A. Swatman, P.M.C. Swatman, Formal specification: an analytic
tool for (management) information systems, Information Systems 2
(2) (1992) 121-160.

[38] P.A. Swatman, D. Fowler, Extending the useful applications domain
for formal methods, Proceedings of the Z User Workshop, Springer,
Berlin, 1992 pp. 125-144, Workshops on Computing Series.

[39] A. Taylor-Cummings, Brindging the USER-IS gap: a study of major
information systems projects, Information Technology (13) (1998)
29-54.

[40] E.N. Wafula, Graphical Representations of Object-Z specifications
using MOSES. Mbus Thesis, Centre for Information Systems
Research, Swinburg University of Technology, Australia, 1995.

[41] J.M. Wing, A specifier’s introduction to formal methods, Computer
September (1990) 8—24.

[42] R. Wieringa, E. Dubois, Integrating semi-formal and formal software
specification techniques, Information Systems 23 (3/4) (1998) 159—
178.

[43] J.B. Wordsworth, Getting the best from formal methods, Information
and Software Technology 41 (1999) 1027-1032.

