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We study the phase diagram and edge states of a two-dimensional p-wave superconductor with
long-range hopping and pairing amplitudes. New topological phases and quasi-particles different
from the usual short-range model are obtained. When both hopping and pairing terms decay
with the same exponent, one of the topological chiral phases with propagating Majorana edge
states gets significantly enhanced by long-range couplings. On the other hand, when the long-
range pairing amplitude decays more slowly than the hopping, we discover new topological phases
where propagating Majorana fermions at each edge pair non-locally and become gapped even in the
thermodynamic limit. Remarkably, these non-local edge states are still robust, remain separated
from the bulk and are localised at both edges at the same time. The inclusion of long-range
effects is potentially applicable to recent experiments with magnetic impurities and islands in 2D
superconductors.
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1. Introduction.— Topological superconductors are novel
quantum phases of matter [1–3] with unconventional
pairing symmetries that host gapless Majorana zero
modes. These are exotic quasiparticles that can real-
ize non-Abelian statistics [4] unlike bosons or fermions.
Remarkably, their intrinsic topological protection and ro-
bustness against disorder make them ideal candidates as
building blocks in quantum computation [5–8] and quan-
tum information processing [9, 10].

As first shown in [11], the surface state of a 3D
topological insulator can host Majorana zero modes by
proximity-coupling a conventional s-wave superconduc-
tor. Topological superconductivity can also be induced
by replacing the topological insulator with a semicon-
ductor with strong spin-orbit interaction [12–16]. In-
deed, several experiments in proximity-induced super-
conducting nanowires [17–20] and topological insulator-
superconductor heterostructures [21–24] have shown sig-
natures for the presence of Majorana zero modes and
chiral edge states. In all these platforms, the supercon-
ducting pairing amplitude is of purely short-range nature.

An alternative approach to realising chiral p-wave
Hamiltonians is to deposit magnetic atoms on top of a
conventional s-wave superconductor substrate [25, 26].
For a periodic 1D array of these magnetic impurities
[27, 28], a p-wave Hamiltonian with intrinsic long-range
pairing [29–34] is induced, provided that the length of
the chain is small compared to the coherence length of
the host superconductor [30]. Novel topological phase di-
agrams [35–38] have been analysed for certain 1D Hamil-
tonians with long-range interactions [39–47]. Interest-
ingly, massless Majorana end modes were shown to pair
up into a topological massive Dirac fermion [35] localised
simultaneously at the two ends of a 1D long-range p-wave
superconductor. More recently, spatially extended Shiba
states [48–50] of magnetic impurities in 2D superconduc-

FIG. 1: Topological phase diagram for the case of equal long-
range decay α = β, as function of the chemical potential
µ and the inverse of the decaying exponent β. At 1/β →
0, we recover the phase diagram for the short-range p-wave
topological superconductor. Using the topological winding
number Ω2, we identify a trivial phase (Ω2 = 0), a topological
phase with a certain chirality (Ω2 = +1) that gets enlarged,
and a topological phase with opposite chirality (Ω2 = −1)
that gets suppressed for very strong long-range decay.

tors have been experimentally observed [51–53]. When
they conform to planar arrays [54–56], long-range cou-
plings between the impurity states emerge, raising the
question of whether new topological phases in 2D long-
range systems can be found.

Motivated by previous experiments with magnetic
atoms [25, 27, 51, 53] and islands [52], we compute the
topological phase diagram (see Fig. 1) and the edge states
of a 2D p-wave superconductor with long-range hopping
and pairing couplings. We find topological phases and
quasi-particles that were absent in the usual short-range
model [3, 4]. When the power-law decay for hopping
and for pairing amplitudes is the same, we observe differ-
ent phenomena. (A) Enhanced Topological Chiral Phase
(ETCP): a topological chiral phase with stable propa-
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gating Majorana edge states even for very strong long-
range effects. (B) Suppressed Topological Chiral Phase
(STCP): the topological phase with opposite chirality
is slowly diminished and even disappears completely in
the infinite-range limit. (C) Chiral Symmetry Inversion
(CSI): a topological phase transition between the two chi-
ral phases is driven when tuning the decaying exponent.
On the other hand, when the pairing amplitude decays
more slowly than the hopping, there is a critical value of
the decaying exponent at which propagating edge states
become gapped. Remarkably, these states remain chi-
ral and localized at the edges, which leads to intrinsic
protection against backscattering.

2. Long-range chiral topological superconductor.— We
consider a 2D lattice of spinless fermions with long-range
hopping and pairing amplitudes,

H =
∑′

m,l
r,s

(
− t

dβr,s
c†l+r,m+scl,m +

∆̃(r, s)

dαr,s
c†l+r,m+sc

†
l,m+

+ h.c.
)
− (µ− 4t)

∑
l,m

c†l,mcl,m, (1)

where the sum
∑′

r,s
runs over all integers r and s ex-

cept r = s = 0. The function dr,s =
√
r2 + s2 is the

Euclidean distance between fermions and µ is the chemi-
cal potential, with a certain origin offset for convenience.
The hopping amplitude t decay with exponent β of the
distance dr,s, and the pairing amplitude

∆̃(r, s) =
∆

dr,s
(r + is), (2)

decay with exponent α. Without loss of generality, we
fix ∆ = t = 1/2 in the rest of the paper. Eq. (2) is
the most natural extension of a p-wave symmetry when
considering long-range effects. Moreover, Hamiltonian
(1) belongs to the D symmetry class of topological insu-
lators and superconductors [57, 58], whatever α and β.
Fluctuation effects over the mean field Hamiltonian have
not been considered in the present work.

At large values of the decaying exponents (α, β →∞),
Eq. (1) has a well-defined limit and we recover a short-
range chiral p-wave Hamiltonian [3, 4, 59, 60]. The sys-
tem hosts vortices with non-Abelian anyonic statistics
[60] that are of great relevance in proposals for topolog-
ical quantum computation [5]. In addition, propagat-
ing Majorana modes appear at the boundary, displaying
a linear dispersion at low momentum that connects the
particle and hole bands (see Fig. 2a).

Now we analyse the fate of these topologically-
protected edge states when we add long-range hopping
and pairing amplitudes as in Eq. (1). To this end, we
assume periodic boundary conditions in the y−direction,

FIG. 2: (a) Energy dispersion relation for cylindrical bound-
ary conditions (periodic along the y−direction) and long-
range hopping and pairing decaying with the same exponent
α = β = 5

2
. We set µ = 1, corresponding to the topological

phase Ω2 = +1. We identify two energy bands correspond-
ing to bulk states and two propagating edge states crossing
at ky = 0. (b) Kinetic energy per particle ε(ky) = gβ(kx =
0, ky)− 2 as a function of ky. The broader the energy range,
the larger the chiral sector with Ω = +1. The blue line cor-
responds to short-range β = ∞, the red line to β = 4, the
yellow one to β = 5

2
. We can see a pronounced peak at the Γ

point for strong long-range effects.

where the Fourier-transformed operators are

c(l,m) =
1√
L

∑
ky∈B.Z.

eikymcl,ky , (3)

with L the number of sites along the y−direction. Thus,
we can rewrite Hamiltonian (1) as H =

∑
ky
H(ky),

where

H(ky) =
∑
l

[∑
r

(
Γβr (ky)c†l+r,kycl,ky+ (4)

+ γαr (ky)c†l+r,kyc
†
l,−ky + h.c.

)
− (µ− 4t)c†l,kycl,ky

]
,

with

Γβr (ky) = −t
L∑
s=0

e−ikys

dβr,s
and γαr (ky) =

L∑
s=0

∆̃(r, s) e−ikys

dαr,s
.

(5)
Since we assume periodic boundary conditions, the

definition of the distance function dr,s and the pairing

function ∆̃(r, s) need to be slightly modified by replac-
ing s → L − s whenever s > L/2. We are now in
a position to study the edge state structure of Hamil-
tonian (4). We consider two different cases: i) α = β
where both hopping and pairing amplitudes decay with
the same exponent, and ii) α < β where the pairing term
is longer-range than the hopping.
3. Chiral Majorana edge states.— Let us first consider
the case where long-range hopping and pairing terms
decay with the same exponent α = β. The motiva-
tion comes from the experimental and theoretical re-
sults regarding magnetic atoms on top of s-wave topo-
logical superconductors both in one-dimensional chains
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[25, 29, 30, 32, 33] and planar structures [51, 53–55],
where long-range effects have been shown to play an even
more important role than in 1D systems.

In what follows, we show the link between the edge
state physics and the different topological phases. We
demonstrate that the topological phase diagram gets
modified by the effect of long-range couplings (see Fig. 1),
creating an imbalance between different chiral phases.
We assume periodic boundary conditions in both spa-
tial directions, where the Hamiltonian (1) takes the form

H =
∑

k Ψ†kH(k)Ψk in the Nambu-spinor basis of paired
fermions with Hk = Ekn(k) · σ, where σ = (σx, σy, σz)
are the Pauli matrices and

Ek =

√(
f2α(k) + h2α(k)

)
+
(
gβ(k) + µ− 2

)2
, (6)

n(k) =
−1

Ek

(
fα(k), hα(k), gβ(k) + µ− 2

)
. (7)

Here, Ek is the energy dispersion relation and n(k) is the
so-called winding vector, expressed in terms of series of
trigonometric functions

fα(k) =
∑
r,s

s

dα+1
r,s

sin (kxr + kys), (8)

hα(k) =
∑
r,s

r

dα+1
r,s

sin (kxr + kys), (9)

gβ(k) =
∑
r,s

cos (kxr + kys)

dβr,s
, (10)

where the sum
∑
r,s runs over all integers r and s except

r = s = 0, and dr,s is the Euclidean distance on the
T 2-torus.

We define a winding number Ω2 in terms of the winding
vector n(k), which reads as

Ω2 =
1

2π

∫
BZ

n(k).
(
∂kxn(k)× ∂kyn(k)

)
d2k, (11)

where BZ stands for Brillouin zone. The winding number
is an integer topological invariant that characterises a
continuous mapping between the crystalline momentum
k ∈ T 2 and the winding vector n(k) ∈ S2. This is also
called the Pontryagin index. The topological transition
points µβc can be identified out of the gap-closing points
of Ek given in Eq. (6),

µβc1 = 2− gβ(kx = 0, ky = 0),

µβc2 = 2− gβ(kx = 0, ky = π), (12)

µβc3 = 2− gβ(kx = π, ky = π).

As shown in Fig. 1, for β � 1, the topological phase
diagram coincides with the short-range chiral p-wave
Hamiltonian [3, 4], with µβ=∞c1 = 0, µβ=∞c2 = 2, µβ=∞c1 =
4. Thus, for 0 < µ < 2, the Majorana modes have a
definite chirality (Ω2 = +1), whereas for 2 < µ < 4 they

have the opposite (Ω2 = −1). We now discuss the con-
sequences of adding long-range effects that significantly
change the boundaries and the phases of the short-range
case. If the chemical potential µ < µβc1 or µ > µβc3, then
Ω2 = 0 and the system is in a trivial phase with no edge
states. However, when µβc1 < µ < µβc2, then Ω2 = +1 and
there are propagating edge states with definite chirality.
As shown in Fig. 2a the edge state at each boundary
cross at ky = 0 when connecting the particle and hole
bands. Interestingly enough, this topological phase gets
significantly enlarged for µ < 0, since the divergence of
the function gβ(kx = 0, ky = 0) at the Γ point shifts

the location of the transition point µβc1 towards −∞ as
the system becomes long-ranged, leading to the ETCP
mechanism. This is of great relevance for experimen-
tal realisations of p-wave superconductors and Majorana
edge states without the need of a precise fine-tuning of
the chemical potential. Physically, the effect is explained
due to a broadening of the quasi-particle kinetic energy
with respect to the short-range case, as shown in Fig. 2b.
As we decrease the long-range exponent β, the energy
peak at the Γ point is more pronounced; thus, the range
of chemical potential at which topological superconduc-
tivity occurs gets enlarged.

A distinct topological phase can be found if µβc2 <

µ < µβc3. This phase is characterised by a winding num-
ber Ω2 = −1 (see Fig. 1) and the presence of propa-
gating edge states with opposite chirality. As shown
in Fig. 3a the edge states at each boundary cross at
ky = π. Surprisingly, this topological phase gets pro-
gressively suppressed when the long-range terms become
important (STCP). This creates an effective asymmetry
between the two chiral sectors, whose mathematical ex-
planation is two-fold. Firstly, in the short-range limit
(β � 1), the two sectors µ > 2 and µ < 2 of Hamiltonian
(1) are connected through the unitary transformation

ci,j → (−1)i+jc†i,j that inverts the chirality. However,
the long-range terms break this symmetry leading to an
asymmetry between the two sectors. The second reason
is that gβ(k) is an alternating and convergent series at
the high-symmetry points X and M ; thus, according to
Eq. (12), the critical points µβc2 and µβc3 always remain
finite. In fact, in the infinite range limit β = 0, they
take on the same value µβ=0

c2 = µβ=0
c3 and the topolog-

ical phase involving the edge crossing at ky = π ends
disappearing, as shown in Fig. 1. Finally, we can induce
topological phase transitions between the two different
chiral phases by tuning the decaying exponent at a fixed
chemical potential. This mechanism, dubbed chiral sym-
metry inversion (CSI) is a distinct feature of these long-
range topological systems [61]. We notice that for α > β
the pairing amplitude decays faster than the hopping,
thus, the edge states never become gapped. Moreover,
the phase boundaries in Fig. 1 only depend on the ex-
ponent β (see Eq. (12)), and therefore would remain
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FIG. 3: Energy dispersion relation E(ky) and wavefunction probability for cylindrical boundary conditions and α < β. We fix
α = 1.7, β = 8. (a) For µ = 3 we identify two energy bands corresponding to bulk states and two propagating edge states
with a certain chirality crossing at ky = π. (b) For µ = 1 the edge states of opposite chirality are now gapped. (c) We plot the
wavefunction probability at ky = 0 for the gapped edge states showing edge localisation.

unaltered.

4. Non-local gapped edge states.— We now consider the
situation where the long-range pairing amplitude decays
slower than the hopping, i.e., α < β. This situation could
be achieved by periodic driving of a topological supercon-
ductor, as shown in [62] for the 1D Kitaev chain [9]. We
demonstrate that depending on the pairing exponent α
and the chirality of the topological phase, the Majorana
edge states become gapped despite remaining localised
and protected at the boundary.

Without loss of generality, we assume β � 1. Firstly,
we focus on the topological phase where 0 < µ < 2 and
Chern number Ω2 = +1. We have previously shown in
Fig. 2a that there are propagating edge states crossing at
ky = 0, provided α = β. But the situation is different for
α < β. By means of finite-size-scaling, we numerically
show that when α . 2 the chiral edge states crossing at
ky = 0 become gapped due to purely long-range effects
as depicted in Fig. 3b. This result coincides with a diver-
gent group velocity vg = ∇kE(k) at the Γ point (with pe-
riodic boundary conditions), signalling strong long-range
effects within this phase. In Fig. 3c, we plot the spatial
distribution |ψ(x)|2 of the edge-states wave function for
the ky = 0 mode proving edge localization.

The edge localization in the x−direction, and the bulk-
edge gap depicted in Fig. 3 are robust against random
fluctuations of the chemical potential in the x−direction.
Disordered impurities in the y−direction could lead to
elastic scattering between states with momentum ky and
−ky respectively, which implies backscattering and lo-
calization of the propagating edge states. However, the
chiral nature of the massive edge states protects them
against backscattering since the modes at ky and −ky are
localized at different edges. It is only at very low momen-
tum ky ≈ 0 that the two modes at the edges hybridize, as
shown in Fig. 3c of the manuscript. This is a difference
with respect to the short-range case. However, this hy-

bridisation happens only very close to ky = 0, thus, the
density of states that are subject to disorder effects is
extremely small. Moreover, at large momentum ky & π

2 ,
the situation is quite the opposite. For strong long-range
effects, the edge states remain localised at each edge and
do not hybridise, whereas for the short-range model the
edge states merge into bulk states. Hence, at large mo-
mentum our new edge states are more robust against
disorder and back-scattering than the propagating Majo-
rana modes in the short-range model. In addition, these
states are topologically protected by a non-trivial Chern
number Ω2 = +1.

On the other hand, if α & 2 the Majorna edge states
are stable. Secondly, we analyse the phase with 2 < µ <
4 and Chern number Ω2 = −1. We find propagating edge
states crossing at ky = π, no matter the exponent α. We
note that at ky = π the group velocity is not divergent
even for very strong long-range; thus, the edge-crossing
point is protected as shown in Fig. 3a. In summary, we
have proven that the long-range pairing induces a gap in
the edge states depending on the chirality of the topo-
logical phase. It is also interesting to analyse the trivial
region µ < 0, where in the short-range limit α� 1 there
are no edge states. However, we numerically find that be-
low α = 5/2 protected gapped edge states are formed out
of originally trivial bulk states. These are now localised
at the two edges at the same time, being non-local. The
energy dispersion relation and the edge localisation are
similar to Fig. 3b and Fig. 3c respectively.

5. Conclusions.— We found that long-range hopping and
pairing amplitudes deeply modify the topological phase
diagram of a two-dimensional p-wave topological super-
conductor. We have shown that when the decay expo-
nents for the pairing and the hopping amplitudes are
equal α = β, one of the topological phases is greatly en-
hanced (ECTP), while the topological phase with oppo-
site chirality is slowly suppressed (SCTP) for very strong
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long-range effects (see Fig 1). By tuning the decaying ex-
ponent β, we can induce topological phase transitions be-
tween the two different chiral phases (CSI) at fixed chem-
ical potential µ. On the other hand, if α < β, i.e., the
pairing decays slower than the hopping amplitude, rich
phenomena occur depending on the exponent α and the
chemical potential µ: i) propagating edge states are topo-
logically stable whatever the exponent α; ii) Majorana
modes become gapped, though remaining localised at
the edges and protected against backscattering; iii) pre-
viously trivial bulk states give rise to protected gapped
edge states. The long-range couplings are motivated by
recent experiments [25, 27, 51–53] and theoretical pro-
posals [54, 55] of lattices of magnetic impurities and is-
lands in 2D superconductors. In addition, the imbalance
between pairing and hopping decaying exponents could
be achieved through Floquet driving fields [62]. The en-
hancement of topological phases by long-range couplings
can be of importance for the observation and manipu-
lation of Majorana modes without the need of a precise
fine-tuning of the chemical potential.
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