Diseño e implementación de técnicas de tolerancia a fallos para el uso de un microprocesador en misiones espaciales

  1. Ramos Amo, Alexis
Dirigida por:
  1. Juan Antonio Maestro Director
  2. Pedro Reviriego Vasallo Director/a

Universidad de defensa: Universidad Antonio de Nebrija

Fecha de defensa: 18 de mayo de 2018

Tribunal:
  1. Jesús Tabero Godino Presidente/a
  2. Alfonso Alejandro Sanchez-Macian Perez Secretario/a
  3. Imran Wali Vocal
  4. Chris Bleakley Vocal
  5. Shih-fu Liu Vocal

Tipo: Tesis

Teseo: 554214 DIALNET

Resumen

Desde el inicio de la carrera espacial, la informática y la electrónica que forman parte de este sector han experimentado un gran y rápido avance, convirtiéndose además en una pieza importante de las misiones actuales. No obstante, a medida que esta tecnología ha evolucionado, también lo han hecho los retos a los que tiene que enfrentarse como por ejemplo, los errores producidos por la radiación cósmica. Es por esto, que nuevas y eficientes técnicas de protección son necesarias en los citados sistemas para hacer posible su correcto funcionamiento en un entorno espacial. Tradicionalmente, esta tarea se ha realizado mediante procesos de fabricación que crean versiones protegidas de los transistores y otros elementos que componen la plataforma electrónica. A este proceso se le conoce como protección (RadHard). Esta técnica da buenos resultados de fiabilidad pero es costosa de fabricar, lo que implica que solo las agencias espaciales y las grandes corporaciones que dispongan de un presupuesto holgado, pueden acceder a ella. Este motivo económico impide por tanto a universidades, centros de investigación y otras instituciones el poder desarrollar sus propias investigaciones espaciales. Como respuesta a este impedimento, en los últimos años ha surgido una nueva alternativa a la fabricación RadHard, que consiste en usar componentes comerciales adaptados a las necesidades del sector espacial mediante técnicas de protección ad-hoc. El uso de esta tecnología conocida como “Commercial-Off-The-Shelf” (COTS), ha supuesto un gran cambio en el diseño electrónico espacial debido al abaratamiento de los costes de diseño y fabricación. Gracias a esto, la barrera económica que impedía a universidades y centros de investigación crear sus propias misiones espaciales está siendo superada. Esto ha propiciado la aparición de nuevas aplicaciones como los satélites de bajo coste del tipo “Nanosat” y los “Picosat”. Existen dos formas de implementar el diseño de un circuito electrónico. La primera forma es fabricar un chip en silicio según la especificación. Este circuito recibe el nombre de “Application-Specific Integrated Circuit” (ASIC). La segunda opción es usar una plataforma programable como por ejemplo una “Field Programmable Gate Array” (FPGA). Este dispositivo está formado por celdas que implementan funciones lógicas, así como memorias y otros elementos electrónicos que implementan la función lógica de un circuito descrito mediante un lenguaje de diseño hardware o “Hardware Description Language” (HDL). Las FPGAs destacan frente a los “ASIC” en que son programables, lo que permite modificar el diseño del circuito para hacerlo tolerante a fallos, actualizarlo una vez cargado y reducir el tiempo necesario de implementación. Todas estas características evitan tener que construir un chip en silicio (ASIC), abaratando por tanto los costes. Los microprocesadores son una parte crucial en cualquier misión espacial. Desde la carga propia de la misión como pueda ser el instrumental científico, hasta los sistemas de navegación, pasando por los de comunicación con la Tierra, los microprocesadores son usados para múltiples funciones. Existen dos tipos de microprocesadores: los “Soft-Core” o “Soft Processor”, que implementan en una FPGA un diseño descrito en “HDL” y los “Hard Processor”, fabricados en un ASIC. Aquellos que son sintetizados en un dispositivo programable, se ven beneficiados por las ventajas anteriormente mencionadas de las FPGAs, como por ejemplo, la opción de personalización del diseño según las necesidades de la aplicación, o la capacidad de exportación de este a otra placa. Dichos procesadores, igual que cualquier elemento electrónico en un vehículo espacial, deben ser protegidos frente a los efectos adversos de la radiación. Esta protección puede realizarse mediante el uso de una FPGA RadHard, mediante una modificación del diseño, o mediante la combinación de ambas técnicas para lograr una protección mayor. La presente tesis aborda el uso de los microprocesadores embarcados en misiones espaciales en FPGAs de tipo comercial, tomando como caso de estudio un “soft processor” de arquitectura RISC-V. Esta arquitectura se distingue por ser abierta, lo que facilita y abarata el desarrollo de un diseño, que junto a otras características propias de ella, la convierte en una candidata ideal para este trabajo. El microprocesador utilizado en los procesos experimentales ha sido implementado en una FPGA. La aportación de la presente tesis radica en dos aportaciones: la primera, en la caracterización de un “soft processor” de arquitectura RISC-V frente a errores aislados para determinar su tolerancia a fallos. La segunda, en la propuesta de dos técnicas de protección de los componentes del microprocesador anteriormente analizado, que usando las ventajas de la implementación en un dispositivo programable, protege dichos módulos de una forma más eficiente que otras soluciones.