The Hedging Cost of Forgetting the Exchange Rate

  1. Beatriz de la Flor 1
  2. Javier Ojea Ferreiro 2
  3. Eva Ferreira García 3
  1. 1 EY Spain - Market Risk Team (Financial Services Office)
  2. 2 Joint Research Centre of the European Commission (JRC) and Complutense Institute of Economic Analysis (ICAE)
  3. 3 Department of Quantitative Methods, University of the Basque Country
Revista:
Documentos de Trabajo (ICAE)

ISSN: 2341-2356

Año de publicación: 2022

Número: 1

Páginas: 1-57

Tipo: Documento de Trabajo

Otras publicaciones en: Documentos de Trabajo (ICAE)

Indicadores

Índice Dialnet de Revistas

  • Año 2022
  • Impacto de la revista: 0,010
  • Ámbito: ECONOMÍA Cuartil: C4 Posición en el ámbito: 124/161

Resumen

The safe-haven property of gold has been widely studied, although little attention has been paid to how exchange rate movements could affect hedging strategies. We analyse the exchange rate role in stock portfolios hedged with gold in several regions from the point of view of non-US and US investors, using vine copulas to model the relation between gold, stock and exchange rates. We find a leading role played by exchange rate hedging stock losses, which outstrips the position of gold (index) in non-US (US) portfolios. The inclusion of the exchange rate can reduce the ES between 107 and 162 bps. An out-of-sample exercise supports our results. The implications of this study go beyond risk management decisions. Regulatory and supervisory authorities might find tools to assess the performance of financial assets under market distress scenarios.

Referencias bibliográficas

  • Aas, K. & Berg, D. (2011). Modeling dependence between financial returns using pair-copula constructions. Joe, H., & Kurowicka, D. (Eds.). Dependence modeling: vine copula handbook (305-328). World Scientific.
  • Aas, K., Czado, C., Frigessi, A., & Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and economics, 44(2), 182-198.
  • Acharya, V. V., Pedersen, L. H., Philippon, T., & Richardson, M. (2017). Measuring systemic risk. The review of financial studies, 30(1), 2-47.
  • Adrian, T., & Brunnermeier, M. K. (2011). CoVaR (No. w17454). National Bureau of Economic Research.
  • Ang, A., & Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of financial Economics, 63(3), 443-494.
  • Artzner, P., Delbaen F., Eber, J.M., & Heath, D. (1997). Thinking Coherently. Risk, 10, November, 68-71.
  • Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical finance, 9(3), 203-228.
  • Ascorbebeitia Bilbatua, J., Ferreira, E., & Orbe Mandaluniz, S. (2021). The Effect of Dependence on European Market Risk. A Nonparametric Time Varying Approach. Journal of Business & Economic Statistics, 1-11.
  • Baruník, J., Kočenda, E., & Vácha, L. (2016). Gold, oil, and stocks: Dynamic correlations. International Review of Economics & Finance, 42, 186- 201.
  • Baur, D. G., & McDermott, T. K. (2010). Is gold a safe haven? International evidence. Journal of Banking & Finance, 34(8), 1886-1898.
  • Berger, T. (2016). On the isolated impact of copulas on risk measurement: Asimulation study. Economic Modelling, 58, 475-481.
  • Cai, J. J., Einmahl, J. H., de Haan, L., & Zhou, C. (2015). Estimation of the marginal expected shortfall: the mean when a related variable is extreme. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 417-442.
  • Cherubini, U., Gobbi, F., & Mulinacci, S. (2016). Convolution copula econometrics. Springer.
  • Cherubini, U., & Luciano, E. (2001). Value-at-risk Trade-off and Capital Allocation with Copulas. Economic notes, 30(2), 235-256.
  • Christoffersen, P. F. (1998). Evaluating interval forecasts. International economic review, 841-862.
  • Christoffersen, P., Errunza, V., Jacobs, K., & Langlois, H. (2012). Is the potential for international diversification disappearing? A dynamic copula approach. The Review of Financial Studies, 25(12), 3711-3751.
  • Ciner, C., Gurdgiev, C., & Lucey, B. M. (2013). Hedges and safe havens: An examination of stocks, bonds, gold, oil and exchange rates. International Review of Financial Analysis, 29, 202-211.
  • Cooke, R.M., Joe, H. & Aas, K. (2011). Vines arise. Joe, H., & Kurowicka, D. (Eds.). Dependence modeling: vine copula handbook (37-72). World Scientific.
  • Ding, P. (2016). On the conditional distribution of the multivariate t distribution. The American Statistician, 70(3), 293-295.
  • Embrechts, P., Frey, R., & McNeil, A. (2011). Quantitative Risk Management.
  • Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350.
  • Girardi, G., & Ergün, A. T. (2013). Systemic risk measurement: Multivariate GARCH estimation of CoVaR. Journal of Banking & Finance, 37(8), 3169-3180.
  • Glosten, L., Jagannathan, R., & Runkle, D., (1993). On the relation between the expected value and the volatility on the nominal excess returns on stocks. Journal of Finance 48(5), 1779-1801.
  • Gokmenoglu, K. K., & Fazlollahi, N. (2015). The interactions among gold, oil, and stock market: Evidence from S&P500. Procedia Economics and Finance, 25, 478-488.
  • Gürgün, G., & Ünalmış, Ä°. (2014). Is gold a safe haven against equity market investment in emerging and developing countries?. Finance Research Letters, 11(4), 341-348.
  • Hamilton, J. D. (1994). Time series analysis. Princeton university press.
  • Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review, 705-730.
  • Hotta, L. K., Lucas, E. C., & Palaro, H. P. (2008). Estimation of VaR using copula and extreme value theory. Multinational Finance Journal, 12(3/4), 205-218.
  • Huang, J. J., Lee, K. J., Liang, H., & Lin, W. F. (2009). Estimating value at risk of portfolio by conditional copula-GARCH method. Insurance: Mathematics and economics, 45(3), 315-324.
  • Iqbal, J. (2017). Does gold hedge stock market, inflation and exchange rate risks? An econometric investigation. International Review of Economics & Finance, 48, 1-17.
  • Joe, H. (2014). Dependence modeling with copulas. CRC press.
  • Joy, M. (2011). Gold and the US dollar: Hedge or haven?. Finance Research Letters, 8(3), 120-131.
  • Junttila, J., Pesonen, J., & Raatikainen, J. (2018). Commodity market based hedging against stock market risk in times of financial crisis: The case of crude oil and gold. Journal of International Financial Markets, Institutions and Money, 56, 255-280.
  • Karimalis, E. N., & Nomikos, N. K. (2018). Measuring systemic risk in the European banking sector: a copula CoVaR approach. The European Journal of Finance, 24(11), 944-975.
  • Kristoufek, L., & Vosvrda, M. (2016). Gold, currencies and market efficiency. Physica A: Statistical Mechanics and its Applications, 449, 27-34.
  • Kupiec, P. (1995). Techniques for verifying the accuracy of risk measurement models. The J. of Derivatives, 3(2).
  • Lin, F. (2011). Tail Dependence between Stock Index Returns and Foreign Exchange Rate Returnsa Copula Approach. Available at SSRN 1931726.
  • Nguyen, Q. N., Bedoui, R., Majdoub, N., Guesmi, K., & Chevallier, J. (2020). Hedging and safe-haven characteristics of Gold against currencies: An investigation based on multivariate dynamic copula theory. Resources Policy, 68, 101766.
  • Ojea-Ferreiro, J. (2019). Structural change in the link between oil and the European stock market: implications for risk management. Dependence Modeling, 7(1), 53-125.
  • Ojea-Ferreiro, J. (2020). Disentangling the role of the exchange rate in oilrelated scenarios for the European stock market. Energy Economics, 89, 104776.
  • Ojea-Ferreiro, J., & Reboredo J.C. (2021). Exchange rates and the global transmission of equity market shocks. JRC Technical Report.
  • Patton, A. J. (2001). Modelling time-varying exchange rate dependence using the conditional copula. University of California. San Diego, Discussion Paper 01-09.
  • Patton, A. J. (2006). Modelling asymmetric exchange rate dependence. International economic review, 47(2), 527-556.
  • Qureshi, S., Rehman, I. U., & Qureshi, F. (2018). Does gold act as a safe haven against exchange rate fluctuations? The case of Pakistan rupee. Journal of Policy Modeling, 40(4), 685-708.
  • Reboredo, J. C. (2011). How do crude oil prices co-move?: A copula approach. Energy Economics, 33(5), 948-955.
  • Reboredo, J. C. (2013). Is gold a safe haven or a hedge for the US dollar? Implications for risk management. Journal of Banking & Finance, 37(8), 2665-2676.
  • Reboredo, J. C., & Rivera-Castro, M. A. (2014a). Can gold hedge and preserve value when the US dollar depreciates?. Economic Modelling, 39, 168-173.
  • Reboredo, J. C., & Rivera-Castro, M. A. (2014b). Gold and exchange rates: Downside risk and hedging at different investment horizons. International Review of Economics & Finance, 34, 267-279.
  • Reboredo, J. C., & Ugolini, A. (2015a). A vine-copula conditional value-atrisk approach to systemic sovereign debt risk for the financial sector. The North American Journal of Economics and Finance, 32, 98-123.
  • Reboredo, J. C., & Ugolini, A. (2015b). Downside/upside price spillovers between precious metals: A vine copula approach. The North American Journal of Economics and Finance, 34, 84-102.
  • Reboredo, J. C., & Ugolini, A. (2016). Quantile dependence of oil price movements and stock returns. Energy economics, 54, 33-49.
  • Reboredo, J. C., Rivera-Castro, M. A., & Ugolini, A. (2016). Downside and upside risk spillovers between exchange rates and stock prices. Journal of Banking & Finance, 62, 76-96.
  • Sjaastad, L. A. (2008). The price of gold and the exchange rates: Once again. Resources Policy, 33(2), 118-124.
  • Sun, W., Rachev, S., Stoyanov, S. V., & Fabozzi, F. J. (2008). Multivariate skewed Student’s t copula in the analysis of nonlinear and asymmetric dependence in the German equity market. Studies in Nonlinear Dynamics & Econometrics, 12(2).
  • Theodossiou, P. (1998). Financial data and the skewed generalized t distribution. Management Science, 44(12-part-1), 1650-1661.
  • Wang, K. M. (2013). Can gold effectively hedge risks of exchange rate?. Journal of Business Economics and Management, 14(5), 833-851.
  • Wang, Y. C., Wu, J. L., & Lai, Y. H. (2013). A revisit to the dependence structure between the stock and foreign exchange markets: A dependenceswitching copula approach. Journal of Banking & Finance, 37(5), 1706-1719.
  • Yew-Low, R. K., Alcock, J., Faff, R., & Brailsford, T. (2013). Canonical vine copulas in the context of modern portfolio management: Are they worth it?. Journal of Banking & Finance, 37(8), 3085-3099.