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Simple Summary: Antimicrobial resistance (AMR) has become a major health challenge of the 21st
century. Several studies confirm the potential role of wildlife as sentinel for pathogens surveillance.
Moreover, the presence of AMR bacteria in the wildlife can be considered as a good indicator of
anthropization level on the ecosystem. The fast increase in AMR worldwide has been enhanced by
several factors as globalization and migration. The study of antimicrobial resistance in wild birds
is of great importance, as they can travel hundreds of kilometers and disseminate pathogens and
AMR across different regions or even continents. The aim of this study was to compare the level
of AMR in three bird species: white stork (Ciconia ciconia), lesser black-backed gull (Larus fuscus)
and black-headed gull (Chroicocephalus ridibundus). For the analysis, 17 antibiotics from the most
representative classes were tested by disk-diffusion method. Results showed 63.2% of seagulls and
31.6% of white storks as carriers of antimicrobial-resistant Escherichia coli, and from all of them, 38.9%
were considered multi-drug resistant. Betalactamics, quinolones and tetracyclines were the antibiotic
classes with the highest rate of AMR.

Abstract: The presence of AMR bacteria in the human–animal–environmental interface is a clear
example of the One Health medicine. Several studies evidence the presence of resistant bacteria in
wildlife, which can be used as a good indicator of anthropization level on the ecosystem. The fast
increase in AMR in the environment in the last decade has been led by several factors as globalization
and migration. Migratory birds can travel hundreds of kilometers and disseminate pathogens and
AMR through different regions or even continents. The aim of this study was to compare the level
of AMR in three migratory bird species: Ciconia ciconia, Larus fuscus and Chroicocephalus ridibundus.
For this purpose, commensal Escherichia coli has been considered a useful indicator for AMR studies.
After E. coli isolation from individual cloacal swabs, antimicrobial susceptibility tests were performed
by the disk-diffusion method, including 17 different antibiotics. A total of 63.2% of gulls had resistant
strains, in contrast to 31.6% of white storks. Out of all the resistant strains, 38.9% were considered
multi-drug resistant (50% of white storks and 30% of seagulls). The antibiotic classes with the highest
rate of AMR were betalactamics, quinolones and tetracyclines, the most commonly used antibiotic in
human and veterinary medicine in Spain.
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1. Introduction

In the recent centuries, the anthropization of ecosystems has forced several animal
species to change their biology and adapt to human presence, coexisting today as urban
wildlife. Urban areas give them unlimited resources to live, feed and reproduce [1]. Cur-
rently, white storks (Ciconia ciconia) are considered migratory birds turned into sedentary
wildlife. Similarly, lesser black-backed gulls (Larus fuscus) and black-headed gulls (Chroico-
cephalus ridibundus) traditionally settle on coastal areas, moving short distances to warmer
latitudes in winter. The constant availability of food and other resources in cities has
favored the establishment of some populations of the three species as residents, shortening
or stopping migration [2,3].

In this sense, landfills constitute an important food source for opportunistic wildlife.
However, the nutritional score of this food is poor and incomplete and involve several
risks for animal health as the accumulation of contaminants, such as heavy metals, pes-
ticides or drugs (e.g., anti-inflammatories and antimicrobials) [2,4]. The accumulation of
organic waste in landfills, plus the inappropriate management of antibiotic residues, have
favored the development of antimicrobial resistance (AMR) and the potential acquisition
of resistant bacteria by animals who feed at these points [5,6]. One of the key facts on
AMR dissemination is the horizontal transmission of antimicrobial resistance genes (ARGs)
between bacteria, no matter if they are the same bacterial species or not. Thus, commensal
and environmental bacteria can acquire these ARGs and serve as amplifiers that perpetuate
the persistence of genes in individuals or even ecosystems [7,8]. Moreover, AMR should
be considered a zoonosis as ARGs run between the human–animal–environment interface
easily [9]. Now, AMR represents one of the biggest challenges in medicine, as it has been
linked to nearly 5 million deaths worldwide in 2019 [10,11]. Escherichia coli is a commensal
bacterium in the gastrointestinal tract of a wide range of hosts that has a high survival
rate on the environment, which make it a good indicator for AMR studies [12]. Instead of
being mainly saprophytic, some serovars can cause disease, called colibacillosis, which is
considered relevant to public and animal health as it is the fourth most reported foodborne
gastrointestinal infection in humans in the European Union (EU) [13]. Moreover, E. coli
has been described as one of the most frequent resistant bacteria in human and animal
medicine, which make the treatment of colibacillosis more difficult [14].

However, AMR is not only a human health issue. Several studies have confirmed the
presence of AMR in livestock, companion animals and wildlife [6,12,14–16]. The prevalence
of AMR largely depends on animal species and regions, but resistant bacteria have been
detected even in Antarctica [17,18]. The presence of AMR in wildlife is directly related to
the pressure of human activity on the ecosystems. Therefore, some wildlife species can
be considered sentinels for AMR pressure in the environment, and AMR surveillance in
wildlife should be a priority [9,19]. Among bird species, seagulls are considered good
sentinels for AMR studies, and high rates of resistant E. coli have been reported in those
species [20–24]. There is limited information regarding storks, but recent studies have also
described the presence of antimicrobial resistance in E. coli in white storks [5,25,26].

In this context, the aim of this study was to compare the presence of AMR E. coli in
white storks and two species of seagulls in central Spain, more than 400 km (≈250 miles)
inland.

2. Materials and Methods
2.1. Study Population and Sample Collection

From October 2018 to May 2019, all the white storks (Ciconia ciconia), lesser black-
backed gulls (Larus fuscus) and black-headed gulls (Chroicocephalus ridibundus) admitted
at the Wildlife Rescue Center (WRC) managed by Grupo de Rehabilitación de la Fauna
Autóctona y su Hábitat (GREFA) were examined and sampled. Handling procedures
complied to European (Directive 2010/63/EU) and Spanish legislation (Royal Decree
53/2013) [27,28].
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This GREFA WRC is located in central Spain (Madrid) and admits almost 7000 wild
animals per year, including all kind of birds, mammals, and reptiles of native Iberian
fauna. GREFA’s aim is to recover and release them back into the wild. The main reasons of
admission to the WRC are related to human activities: hunting, accidents with power lines
(electrocution or traumas), windows or cars, among others. Additionally, natural diseases
of wildlife are another cause of admission at the WRC. In fact, WRCs can be considered as
passive health monitoring centers for wildlife.

During the first examination, a cloacal swab was taken from each animal for E. coli
isolation and AMR detection, prior to any treatment. The samples were conserved on a
Cary Blair transport medium (Deltalab, Barcelona, Spain) at 4 ◦C and processed within 24 h
from the collection. Information about species, age, area of origin, proximity to landfills
and clinical data from each animal was recorded when possible. Moreover, historical
information about ringed birds was facilitated by official organisms from the countries
where they had been ringed. Animals were classified by age in three groups, based on the
feather development and phenotypic changes: nestling (including in this group fledglings),
young and adult. According to the origin, five different regions were established to assess
potential geographical differences: center, north, south, east, and west of the Community
of Madrid (Figure 1).

Animals 2022, 12, x FOR PEER REVIEW 3 of 11 
 

at the Wildlife Rescue Center (WRC) managed by Grupo de Rehabilitación de la Fauna 

Autóctona y su Hábitat (GREFA) were examined and sampled. Handling procedures 

complied to European (Directive 2010/63/EU) and Spanish legislation (Royal Decree 

53/2013) [27,28].  

This GREFA WRC is located in central Spain (Madrid) and admits almost 7000 wild 

animals per year, including all kind of birds, mammals, and reptiles of native Iberian 

fauna. GREFA’s aim is to recover and release them back into the wild. The main reasons 

of admission to the WRC are related to human activities: hunting, accidents with power 

lines (electrocution or traumas), windows or cars, among others. Additionally, natural 

diseases of wildlife are another cause of admission at the WRC. In fact, WRCs can be con-

sidered as passive health monitoring centers for wildlife.  

During the first examination, a cloacal swab was taken from each animal for E. coli 

isolation and AMR detection, prior to any treatment. The samples were conserved on a 

Cary Blair transport medium (Deltalab, Barcelona, Spain) at 4 °C and processed within 24 

h from the collection. Information about species, age, area of origin, proximity to landfills 

and clinical data from each animal was recorded when possible. Moreover, historical in-

formation about ringed birds was facilitated by official organisms from the countries 

where they had been ringed. Animals were classified by age in three groups, based on the 

feather development and phenotypic changes: nestling (including in this group fledg-

lings), young and adult. According to the origin, five different regions were established 

to assess potential geographical differences: center, north, south, east, and west of the 

Community of Madrid (Figure 1). 

 

Figure 1. Origin of the animals included in the study. 

2.2. Microbiological Analysis 

Samples were plated onto MacConkey agar (Oxoid Ltd., Basingstoke, United King-

dom) and incubated at 37 ± 1 °C for 24 h. Next, a single colony morphologically compatible 

with E. coli was subcultured on a Columbia agar plate (Oxoid Ltd., Basingstoke, UK) and 

incubated again at 37 ± 1 °C for 24 h in order to get a monoclonal culture, which was 

Figure 1. Origin of the animals included in the study.

2.2. Microbiological Analysis

Samples were plated onto MacConkey agar (Oxoid Ltd., Basingstoke, United King-
dom) and incubated at 37 ± 1 ◦C for 24 h. Next, a single colony morphologically compatible
with E. coli was subcultured on a Columbia agar plate (Oxoid Ltd., Basingstoke, UK) and
incubated again at 37 ± 1 ◦C for 24 h in order to get a monoclonal culture, which was
collected and stored at −20 ◦C for further analyses. Bacterial identification was confirmed
by Gram stain and classical biochemical tests, including catalase, potassium hydroxide
(KOH), oxidase, glucose fermentation and motility tests [29]. Additionally, seven random
isolates were tested using API (Analytical Profile Index) 20E strips (BioMérieux, Marcy
l’Etoile, France). All the confirmed strains were stored in cryovial with nutritive broth and
glycerol (80%: 20%, respectively) at −80 ◦C for further analysis.
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Antimicrobial susceptibility test was performed according to the disk diffusion (Kirby–
Bauer) method and the European Committee on Antimicrobial Susceptibility Testing (EU-
CAST) guidelines [30]. Isolates were recovered from cryovials and spread on Columbia
Agar with 5% sheep blood (Becton Dickinson GmbH, Heidelberg, Germany). The inocu-
lum suspension was prepared in sterile 0.8% saline solution to a turbidity 0.5 McFarland.
Then, the inoculum was transferred onto Mueller–Hinton agar (Becton, Dickinson Gmb,
Heidelberg, Germany) and antimicrobial disks were added to the surface. A total of
17 antimicrobials from nine classes were tested, most of them recommended for indicator
commensal E. coli (Decision EU 2020/1729) (Table 1) [31]. After 18–20 h at 36 ± 1 ◦C, sensi-
tivity or resistance was determined by growth inhibition diameter regarding standardized
EUCAST breakpoint tables [32], except for ceftiofur, enrofloxacin and tetracycline that were
evaluated according to Markey et al. [29]. Multidrug resistance (MDR) was considered
when the isolate was non-susceptible to at least one antimicrobial agent in three or more
different classes of antimicrobial [33].

Table 1. Antimicrobial disks used in this study.

Class of Antimicrobial Antimicrobial Code Concentration (µg) Supplier

Penicillin Ampicillin AMP10 10 Bio-Rad®

Ticarcillin TIC75 75 Bio-Rad®

Amoxicillin-clavulanic
acid AMC30 20–10 Bio-Rad®

Cephalosporine Cefotaxime CTX30 30 Bio-Rad®

Cefoxitin FOX30 30 Bio-Rad®

Ceftazidime CAZ30 30 Bio-Rad®

Ceftiofur XNL30 30 Becton, Dickinson®

Monobactam Aztreonam ATM30 30 Bio-Rad®

Carbapenem Imipenem IPM10 10 Bio-Rad®

Quinolone Nalidixic acid NAL30 30 Bio-Rad®

Ciprofloxacin CIP5 5 Bio-Rad®

Enrofloxacin ENR5 5 Oxoid®

Tetracycline Tetracyclin TET30 30 Bio-Rad®

Aminoglycoside Amikacin AKN30 30 Bio-Rad®, BD®

Gentamicin GNM10 10 Bio-Rad

Sulphonamide Trimethoprim-
sulfamethoxazole SXT25 1.25–23.75 Bio-Rad®

Amphenicol Chloramphenicol CHL30 30 Bio-Rad®

Bio-Rad Laboratories®, Hercules, CA, USA; Becton, Dickinson GmbH®, Heidelberg, Germany; Oxoid Ltd.,
Basingstoke, United Kingdom.

2.3. Statistical Analysis

Statistical analysis was done using a commercially available software application
(SPSS 21.0 software package: SPSS Inc., Chicago, IL, USA, 2002). For the presentation
of mean results, 95% confidence values were calculated. Different statistical tests were
performed to assess the relationship between the presence of antimicrobial resistances
and different variables (species, age, origin and pathology). Chi-square and Fisher’s exact
test were employed to study parametric variables, and Mann–Whitney U test for non-
parametric variables. A two-tailed p-value ≤ 0.05 was considered to indicate a statistically
significant difference.

3. Results

A total of 40 animals were included in the study: 20 white storks, 16 lesser black-
backed gulls and 4 black-headed gulls. Because of the small number of black-headed
gulls included on the study, they have been grouped with lesser black-backed gulls for
the statistical analysis (seagulls from now on). Animals were admitted at GREFA WRC
because of different conditions, mainly trauma for white storks and botulism or trauma for
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seagulls. Classification by age showed that 20% were nestlings (8/40), 20% young (8/40)
and 60% adults (24/40).

Individuals included in the study were firstly found and collected in areas with
human activity, where some resident populations have been established and feed regularly
in landfills. However, some animals maintain recent migratory habits, as detected by leg
rings. Regarding their geographical origin, 20% were from the Center of the Community of
Madrid (8/40), 10% from the south (4/40), 20% from the west (8/40), 20% from the north
(8/40) and 30% from the east (12/40).

E. coli was isolated from 38 animals: 19 storks and 19 seagulls. Overall, 47.4%
(45.9–48.9%) of E. coli isolates were resistant to at least one of the 17 antimicrobials tested
(18/38). The higher percentage of resistance was found in (in decreasing order): ampicillin
(13/18), ticarcillin (13/18), nalidixic acid (9/18), tetracycline (8/18) and enrofloxacin (7/18).
The resistance to ampicillin was always related to resistance to ticarcillin. Only one isolate
was resistant to aztreonam. All isolates were susceptible to cefoxitin, ceftiofur, cefotaxime,
imipenem and amikacin.

The percentage of AMR observed for each antimicrobial and the phenotypic profiles
are detailed in Table 2.

Table 2. Phenotypic profiles of antimicrobial resistance in Escherichia coli by species and overall
prevalence of resistant or intermediate results.

Species 1

Id. No.

Antimicrobials 2

AMP TIC AMC CAZ ATM NAL CIP ENR TET GNM SXT CHL

Storks
10

12 *
14
22
32
36
37
40

Seagulls
1
2
3

4 *
8

11 †

13 *
18
20
21
25
29

Prevalence 3

(%)
R 34.2 34.2 10.5 - 2.6 21.1 15.8 18.4 21.1 10.5 13.2 7.9
I - - - 5.3 - 2.6 2.6 5.3 - - - -

Phenotypic resistance: dark grey, intermediate resistance: light grey. 1 Bird species: white storks (Ciconia ciconia),
and seagulls sampled in the Community of Madrid (central Spain). Seagulls with * were black-headed gull
(Chroicocephalus ridibundus), the rest were lesser black-backed gull (Larus fuscus). Individuals with † had a leg ring
from an EU country. 2 Antimicrobials: AMP: ampicillin, TIC: ticarcillin, AMC: amoxicillin-clavulanic acid, CAZ:
ceftazidime, ATM: aztreonam, NAL: nalidixic acid, CIP: ciprofloxacin, ENR: enrofloxacin, TET: tetracycline, GNM:
gentamicin, SXT: trimethoprim-sulfamethoxazole, CHL: chloramphenicol. All isolates were sensitive to cefoxitin,
cefotaxime, ceftiofur, imipenem and amikacin. 3 Prevalence according to 38 isolates (19 E. coli-culture positive
animals each group). R: resistant strains, I: intermediate strains.
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From all the resistant E. coli isolates, 38.9% (35.16–42.64%) were considered MDR
(7/18). The distribution of non-susceptible isolates to one or several antimicrobial classes is
detailed in Figure 2.
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Figure 2. Number of Escherichia coli isolates showing sensitivity (0) or phenotypic resistance to one or
more antibiotic classes (one to six) according to bird species.

Regarding bird species, 31.6% (28.8–34.4%) of E. coli isolates from the white storks
(6/19) were resistant to at least to one antimicrobial, and three of these isolates were
considered MDR. The six isolates were resistant to penicillins and one also showed re-
sistance to aztreonam. Additional resistances were found in four isolates. Two MDR
isolates showed resistance to four and six antimicrobial classes, combining (in addition to
penicillins) quinolones, tetracycline, trimethoprim-sulfamethoxazole and gentamicin or
chloramphenicol (Table 2).

Among seagulls, 63.2% (60.5–65.8%) of E. coli were resistant (12/19), and four of
them were considered MDR. The E. coli isolated from two of the four black-headed gulls
showed resistance: one to tetracyclines and the other one had an MDR pattern (AMP-
TIC-CAZ-TET). Patterns showed more diversity than those observed in white storks.
Resistance to penicillins was found in seven isolates, resistance to quinolones in seven
isolates and to tetracycline in six isolates. The four MDR isolates showed resistance against
three, four or five categories, combining penicillins and/or quinolones, with trimethoprim-
sulfamethoxazole, tetracycline, chloramphenicol or gentamicin (Table 2).

No significant differences were found between the presence of AMR and the species
(p = 0.11), age (p = 0.59), origin (p = 0.47) and pathology (p = 0.24); neither between
the existence of MDR and the same variables (p = 0.78, p = 0.15, p = 0.11 and p = 0.46,
respectively).

4. Discussion

This study shows a high proportion of AMR Escherichia coli isolates (47.4%) from
white storks, lesser black-backed gulls, and black-headed gulls, three urban bird species
that have modified their feeding habits and migratory behavior in recent years. Despite
the fact AMR should be expected in a lower proportion in wild birds, urban birds have
a closer contact with human garbage, increasing the risk of acquiring AMR [24,34,35].
Free-living wildlife is never supposed to have received antibiotic treatment; thus, the
main source of this resistance may be the interaction with human wastes and sewage.
Several publications highlight the development of AMR in bacteria present in landfills
and water treatment plants [36,37]. The trend of white storks, black-backed gulls and
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black-headed gulls wintering in Spain to feed on landfills observed in recent years would
fit the hypotheses of this exposure [3,38].

It is known that antibiotic consumption promotes the development of AMR in ani-
mals [39]. In the EU, the most employed antibiotics in human medicine are betalactamics,
macrolides and quinolones, while in veterinary it is betalactamics and tetracyclines [40].
Betalactamics and quinolones were shown to be the antimicrobial classes with the highest
rate of resistance in the present study. According to the Spanish Agency for Drugs and
Medical Devices (AEMPS), the antibiotic with the highest percentage of AMR in E. coli
in Spain in 2017 was ampicillin in humans and livestock, with rates of 65% and 72.81%,
respectively [39]. The extended use of this antibiotic agrees with the high percentage of
ampicillin-resistant strains detected in both white storks and seagulls.

The prevalence of AMR found in the seagulls included in the present study (63.2%)
is higher compared to those published in EU countries. Among the antimicrobials tested
by other authors in samples from seagulls from the Mediterranean countries, the present
study showed similar results: antimicrobial classes with higher resistance were penicillins,
tetracyclines and quinolones [9,15,20,22,41,42]. Previously, Stedt et al. assessed the AMR
presence in seagulls from the Spanish Mediterranean coast among other regions and the
presence of AMR is similar between both studies (61.2% Stedt vs. 63.2%) [22]. It is in-
teresting to note that, despite the high level of AMR, all the isolates were susceptible to
cephalosporins (except one to ceftazidime) and carbapenems. Resistance to these antimi-
crobials has been raised in seagulls worldwide [9,43–45] and has also been described in
the Iberian Peninsula [21,46,47]. It is tempting to speculate if resistances to cephalosporins
found in coastline birds are related to seawater contaminated with human sewage, and
thus not affecting inland wild birds.

Regarding white storks, there is less information about the burden of AMR in E. coli in
this species. Our results agree to those reported by Skarzynska et al. [48]: a high proportion
of resistance to penicillins, quinolones and trimethoprim-sulfamethoxazole. However,
Camacho et al. evaluated the AMR in white storks from central south Spain and found
a higher level for gentamicin (44.8–46.7%) and enrofloxacin (40.2–41.4%), compared to
our results (10.5%, both) [5]. Additionally, cefotaxime-resistant strains were detected in a
high proportion (22–37.9%) while all our isolates were sensitive. A recent study that has
analyzed the AMR on E. coli isolated from storks, including 12 antimicrobials [26], found
a higher proportion of resistant isolates, compared to our panel, specifically to ampicillin
(100%), nalidixic acid and ciprofloxacin (80%), tetracycline (67%) and gentamicin (33%) [26].

In addition, wild birds may harbor other relevant bacterial species, such as Salmonella
and Staphylococcus aureus. Salmonella spp. isolates from white storks feeding on the same
area of our study showed resistance to quinolones and ampicillin, which is in accordance
with our results, but none was resistant to gentamicin and chloramphenicol [6]. Addi-
tionally, methicillin-resistant S. aureus has been isolated in tracheal samples from white
storks (3.3%) [49]. In these studies, AMR carriage has been attributed to human residues
exposure [5,6,26,49].

The rate of MDR in white storks (50%) is higher than that obtained in previous
studies [5]. However, the proportion of MDR observed in seagulls (25%) agrees with those
published by Stedt et al. (28.6–45.3%) [22].

Some species of wildlife had been suggested as sentinels for AMR surveillance in the
ecosystems. However, sampling wildlife requires considerable logistical efforts and/or
the handling of animals without interfering in their welfare. In this context, WRCs can be
valuable resources [5]. One advantage is the success of the microbiological analysis, as the
time between the sample collection and the arrival at the laboratory is shortened. E. coli
was recovered from a higher proportion of sampled animals than in other studies [5,23,50].

Finally, assigning the source and dissemination of AMR is not easy and the role of
wildlife as reservoirs of AMR for humans would require extended studies [19,50,51]. Two
issues should be highlighted regarding the wildlife species studied here. First, some of
these birds are migratory. In fact, two white storks and two lesser black-backed gulls
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sampled in this study had a leg ring from Belgium (stork no. 28) and Germany (stork no.
12, seagulls no. 11 and no. 16), respectively. Interestingly, stork no. 12 and seagull no.
11 carried MDR (penicillins, quinolones, tetracyclines, sulfonamides) and AMR-resistant
E. coli isolates, respectively. It has been described that migratory birds can carry more
AMRs than non-migratory [52], as the migratory patterns of wild birds can exponentially
magnify the dissemination and acquisition of AMRs, even in remote regions [53]. Second,
most of the animals sampled in this study had been brought into the WRC by citizens
who found the animals, which implies a direct contact in the human–wildlife interface.
Although the spillover of enteric pathogens from wild birds to humans is controversial [54],
a close contact by handling an injured animal could represent a transference route in both
directions for citizens and WRC staff [51].

Once a health issue is introduced into a wild population, its control is difficult to
achieve. Thus, a key priority would be a prudent management of anthropogenic wastes
and sewage to avoid the access of wild animals and prevent the transmission of AMR
to wildlife.

5. Conclusions

In conclusion, our study describes the profiles of phenotypic AMR detected in E.
coli isolated from white storks and seagulls in central Spain. These bird species can be
considered suitable sentinels for AMR and MDR surveillance. The proportion of AMR and
MDR detected in the present study is higher than the rates published by other authors,
which could be in concordance with the upward trend of AMRs detection worldwide. In
this context, an adequate management of antibiotic residues and urban waste should be a
priority to prevent further AMR dissemination into wildlife.
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