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Abstract
We present a new characterization of the position value, one of the most prominent 
allocation rules for communication situations (graph-games or games with restricted 
communication). This characterization includes the PL-marginality property, an 
extension for communications situations of the classic marginality for TU-games, as 
well as component efficiency and balanced link contributions for necessary players.

Keywords  Game theory · TU-game · Communication situations · Position value · 
Marginality · PL-marginality

Mathematics Subject Classification  91A06 · 91A12

1  Introduction

The study of cooperative games (TU-games) in which a graph imposes some restric-
tions on the cooperation of the players, the so-called communication situations, 
graph-games or games with restricted communication, was introduced by (Myerson 
1977, 1980). He modified the original game to the graph-restricted game using the 
graph. Then, he proposed the Shapley value (Shapley 1953) as a point solution for 
these situations. First, he characterized the value in terms of component efficiency 
and fairness (Myerson 1977). After that, he used the component efficiency and bal-
anced contributions to obtain another characterization (Myerson 1980).
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In his Ph.D. thesis (in Dutch), Meessen (1988) introduced—also for communica-
tion situations—the link game and the position value. The link game is a TU-game 
in which the players are the links of the graph and the value of each subgraph (coali-
tion of links) coincides with the worth of the grand coalition in the Myerson (sub)
graph-restricted game. The position value is calculated, for each player, as half of 
the sum of the Shapley value in the link game of the links he is involved in.

These concepts were later popularized by Borm et al. (1992). Slikker (2005) gave 
the first characterization of the position value for general communication situations. 
van den Brink et al. (2011) gave another characterization (as a corollary from a more 
general result regarding Harsanyi power solution). This is generalized for union sta-
ble systems in Algaba et al. (2015). The position value has received a lot of atten-
tion from game theorists. Algaba et al. (2000) defined the position value for union 
stable systems, Casajus (2007) proved that the position value is, in some sense, the 
Myerson value, Gómez et  al. (2004) introduced a unified approach for the Myer-
son and the position values, Kongo (2010) established that the difference between 
the position value and the Myerson value is attributable to the existence of coali-
tion structures, Ghintran et  al. (2012) extended it to the probabilistic communica-
tion situations, Ghintran (2010) defined a weighted position value, Xianghui et al. 
(2017) defined the position value for communication situations with fuzzy coali-
tions, Fernández et al. (2018) introduced the cg-position value for games on fuzzy 
communication structures, Zhang et al. (2019) and Shan et al. (2020) characterized 
the position value for hypergraph communications situations, and Borkotokey et al. 
(2020) characterized it (and also the Myerson value) for the subclass of probabilistic 
network games in multilinear form.

Marginalism is a principle in economics according to which the value is deter-
mined by the additional utility that an extra unit of a good provides. The propagation 
of this concept in economics is commonly referred to as the Marginalist Revolution, 
establishing the difference between classical and modern economics. Marginalism 
plays a major role in the Shapley value, since it is calculated as a linear combina-
tion of the player’s marginal contributions to the different coalitions. Young (1985) 
brilliantly introduced the marginality property.1 This property states that if the mar-
ginal contributions of a player in two different games coincide, the value of that 
player should be equal in both games. After this work, many other contributions 
are devoted to analyzing the relation between the Shapley value and the marginality 
property. See, for example, de Clippel and Serrano (2008), Skibski et al. (2013), and 
Huettner and Casajus (2019).

All in all, the Myerson value and the position value can be thought of as Shap-
ley values of certain particular types of games. Therefore, it makes sense to ask 
whether the property of marginality holds for them. The answer is negative in 
both cases. Then, the issue is to explore whether certain variations of the classic 
property of marginality can serve to characterize these values. These variations 
arise precisely from ideas related to centrality.

1  In his characterization of the Shapley value, Young included the property of strong monotonicity, 
although, in fact, he used the property of marginality that receives this name after Chun (1989). Pintér 
(2015) gave another proof of Young’s axiomatization.
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Gómez et al. (2003) and González-Arangüena et al. (2017) additively decom-
posed the Myerson value into the WG-Myerson value that measures the produc-
tivity of the player via the characteristic function (for symmetric games, the com-
munication centrality), and the BG-Myerson value that evaluates the ability of 
the player to intermediate among others (betweenness centrality). Manuel et  al. 
(2020) introduced different types of marginal contributions for communication 
situations as well as the corresponding marginality properties. When the coopera-
tion in a game is restricted by means of a graph, in addition to the classic mar-
ginal contribution of a player to a coalition, it is possible to consider that a player 
can contribute to a coalition by lending it his links to increase the connectedness, 
but without joining himself (L-marginal contribution), and also the possibility of 
joining with his relationships (PL-marginal contributions). Marginality (respec-
tively L-marginality and PL-marginality) states that if player’s marginal contri-
butions (respectively, L-marginal and PL-marginal contributions) are the same 
in two communication situations that differ in the characteristic function, ceteris 
paribus, the outcome will also be the same in both of them.

In this way, the authors prove that the Myerson value, the WG-Myerson value, 
and the BG-Myerson value can be characterized by using, respectively, PL-mar-
ginality, marginality, and L-marginality, as well as other properties. Some of 
these properties can be considered as part of a recent literature (see Yokote and 
Kongo (2017), and Navarro (2019)) that consists of weakening well-known axi-
oms. Other variants of the marginality axioms can be found in (Casajus 2011a, b) 
and Casajus and Yokote (2017).

In this paper, we explore the extent to which the position value can be charac-
terized from (one of the previous) marginality properties. Then, the aim of this 
article is twofold. On the one hand, we wish to relate and characterize the posi-
tion value with the marginality properties. On the other hand, to look for new 
parallel behaviors between the Myerson value and the position value. In this way, 
we prove that the position value can be characterized in terms of component effi-
ciency, balanced link contributions for necessary players, and PL-marginality.

This characterization supports the use of the rule in applications in which the 
underlying game is changing, whereas the network is fixed. We can find examples 
in cost allocation problems in a network or when the allocation should be updated 
as the value changes. For example, the distribution of the maintenance costs of a 
road network between towns fluctuates over time, but those towns that have the 
same PL-marginal contributions over time should always bear the same costs.

The remainder of the paper is organized as follows. A section of preliminaries 
is placed after this introduction. In Section 3, we include the new characterization 
of the position value, and in Section 4, we prove the independence of the used 
axioms. Section 5 is devoted to present an additive decomposition of the position 
value in a parallel manner to that existing for the Myerson value. The paper ends 
with some final remarks, an appendix with the proof of the main result and the 
references.
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2 � Preliminaries

A TU-game or a cooperative n-person game  is a pair (N, v), where N = {1,… , n} 
denotes the set of players and v is a real function defined on 2N = {S|S ⊆ N} , the 
family of all subsets (coalitions) of N. For each coalition S, v(S) is the outcome 
that his s = |S| members can obtain if they decide to cooperate. It is assumed that 
v(�) = 0.

The set of all TU-games with N fixed is a vector space, GN , whose dimension 
is 2n − 1 . Given ∅ ≠ S ⊆ N , the game (N, uS) with characteristic function given by

is known as the unanimity game of S. The family {(N, uS)�≠S⊆N} is a basis of GN . As 
a consequence, given (N, v) ∈ GN,

The coordinates {Δv(S)}�≠S⊆N are known as Harsanyi dividends (Harsanyi 1959). 
We can obtain the dividend of each coalition, ∅ ≠ S ⊆ N , using the following 
expression:

Consequently, the value of each coalition, ∅ ≠ S ⊆ N , can be obtained from the divi-
dends of its subcoalitions as

(N, v) is a zero-normalized game if v({i}) = 0 for all i ∈ N . Given a game (N, v), 
we will denote (N, v̂) the zero-normalized game with characteristic function given 
by v̂(S) = v(S) −

∑
i∈S v({i}). G

N
0

 is the subspace of GN consisting of all the zero-
normalized games.

The game (N, v) is symmetric if v(S) = v(T) whenever s = t.
Given (N,  v), i ∈ N is: a) a null player if v(S ∪ {i}) − v(S) = 0 for all 

S ⊆ N ⧵ {i} , b) a necessary player (van den Brink and Gilles 1996) if v(S) = 0 for 
all S ⊆ N ⧵ {i}.

An allocation rule for TU-games is a function � defined on GN that assigns to 
every (N, v) ∈ GN a vector �(N, v) ∈ ℝ

n whose ith component represents the pay-
off to the player i in the game (N, v).

The most prominent allocation rule for TU-games was introduced by Shapley 
(1953). The Shapley value assigns to every player the following linear combina-
tion of his marginal contributions to different coalitions:

uS(T) =

{
1, if S ⊆ T ,

0, otherwise,

v =
∑

�≠S⊆N

Δv(S)uS.

Δv(S) =
∑
T⊆S

(−1)s−tv(T).

v(S) =
∑

�≠T⊆S

Δv(T).
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and it can be alternatively obtained from the Harsanyi dividends as:

A graph is a pair (N, �) , where N = {1, 2,… , n} is the set of nodes and � a subset of 
�N = {{i, j} | i, j ∈ N, i ≠ j} . Each link {i, j} ∈ � represents the possibility of a direct 
relationship between i and j. We will denote by ΓN the family of all graphs with node 
set N.

Two nodes i and j are directly connected in a graph (N, �) , if {i, j} ∈ � ; and they 
are connected if there exists a sequence of nodes (called intermediaries) i1, i2,… ik 
with i1 = i , ik = j such that {il, il+1} ∈ � , for l = 1,… , k − 1 . A set S ⊆ N , S ≠ ∅ , is 
connected (internally connected) in � if every pair of nodes in S can be connected 
using intermediaries in S. We will assume that singletons are connected sets. A 
connected component, C, in (N, �) is a maximally connected set, i.e., C is con-
nected in (N, �) and C′ ⊃ C is not connected. A graph (N, �) induces a partition 
N∕� of the set N into connected components. The restriction of the graph (N, �) 
to the set S ⊆ N is the graph (S, �|S ) with �|S = {{i, j} ∈ � | i, j ∈ S} . S∕� will be 
the set of the connected components of S in (S, �|S ) . For each 𝛾 ′ ⊆ 𝛾 , (N, � �) is a 
subgraph of (N, �) . Given a graph (N, �) and l ∈ � , (N, � ⧵ {l}) is the subgraph 
obtained when removing the link l, and (N, �i) is the subgraph of the links inci-
dent on i, i.e., �i = {l ∈ � | i ∈ l}.

A communication situation is a triple (N, v, �) , where (N, v) is a TU-game and 
(N, �) an undirected graph. CSN will denote the set of all communication situa-
tions with players-nodes set N, and CSN

0
 the subset of those communication situa-

tions in which the game is zero-normalized.
A map � ∶ CS

N
→ ℝ

n is an allocation rule for communication situations. 
�i(N, v, �) represents the outcome according to � for player i in game (N, v) given 
the restrictions in the communication imposed by the graph (N, �).

Meessen (1988) and Borm et al. (1992) introduced a very relevant allocation 
rule for communication situations, the position value. Given (N, v, �) ∈ CS

N
0

 , 
they defined a new TU-game, the link game, (� , rv

�
) . In this game, the play-

ers are the links of the graph, and the characteristic function is given by 
rv
𝛾
(𝜂) =

∑
C∈N∕𝜂 v(C), for each 𝜂 ⊆ 𝛾 . As rv

�
(�) =

∑n

i=1
v({i}) , it suffices that the 

game be zero-normalized for the requirement that rv
�
(�) = 0 to be satisfied.

The position value of player i in (N, v, �) ∈ CS
N
0

 , denoted �i(N, v, �) , is defined 
as

Then, it assigns to each player in a communication situation half of the sum of the 
Shapley values (in the link game) of the links he is involved in.

Shi(N, v) =
∑

S⊆N⧵{i}

(n − s − 1)!s!

n!
(v(S ∪ {i}) − v(S)), i ∈ N,

Shi(N, v) =
∑

S⊆N∶i∈S

Δv(S)

s
, for all i ∈ N.

�i(N, v, �) =
1

2

∑
l∈�i

Shl(N, r
v
�
).
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An allocation rule � defined on CSN (or in CSN
0

 if sufficient): 

i)	 satisfies component efficiency (Myerson 1977) if for all (N, v, �) ∈ CS
N and all 

C ∈ N∕� ,
∑

i∈C �i(N, v, �) = v(C);
ii)	 verifies balanced link contributions (Slikker 2005) if given (N, v, �) ∈ CS

N
0

 and 
i, j ∈ N, ∑l∈�j

[�i(N, v, �) − �i(N, v, � ⧵ {l})] =
∑

l∈�i
[�j(N, v, �) − �j(N, v, � ⧵ {l})].

	   In this paper, we will use a weak version of this property in which the previous 
condition is only required for necessary players.2

iii)	 satisfies link anonymity (Borm et al. 1992), if for all (N, v, �) ∈ CS
N
0

 link anony-
mous (i.e., a communication situation in which the link game is symmetric), there 
exists � ∈ ℝ , such that for all i ∈ N , it holds that �i(N, v, �) = �|�i|.

iv)	 satisfies the superfluous link property (Borm et al. 1992), if for all (N, v, �) ∈ CS
N
0

 
and every l ∈ � superfluous link in (N, v, �) (i.e., a null player in the link game), 
then �(N, v, �) = �(N, v, � ⧵ {l}).

v)	 verifies PL-marginality (Manuel et al. 2020) if given (N, v, �) , (N,w, �) ∈ CSN 
and i ∈ N , such that rv

𝛾
(𝜂 ∪ 𝛿) − rv

𝛾
(𝜂) = rw

𝛾
(𝜂 ∪ 𝛿) − rw

𝛾
(𝜂), for all 𝜂 ⊆ 𝛾 ⧵ 𝛾i, 𝛿 ⊆ 𝛾i, 

then �i(N, v, �) = �i(N,w, �).

Borm et al. (1992) characterized the position value only on the domain consisting 
of communication situations with a fixed player set and a cycle-free graph. Then, 
the position value is the unique allocation rule in such a domain that satisfies com-
ponent efficiency, additivity, the superfluous link property, and the link anonymity.

Slikker (2005) expressed the position value in terms of the link game dividends 
as, 𝜋i(N, v, 𝛾) =

∑
𝜂⊆𝛾

1

2
Δrv(𝜂)

�𝜂i�
�𝜂� , and he also characterized this allocation rule using 

component efficiency and balanced link contributions.
Casajus (2007) characterized the position value in terms of the Myerson value 

(Myerson 1977, 1980) of the link-agent form, a modification of the original TU-
game different from the graph-restricted game or the link game.

3 � A new characterization of the position value

This section is devoted to characterizing the position value in terms of components 
efficiency, balanced link contributions for necessary players, and PL-marginality.

It is well known that the position value satisfies component efficiency and bal-
anced link contributions for all players (Slikker 2005), and thus for necessary 
players.

To prove that it also satisfies PL-marginality, we will use the following lemma 
whose proof is straightforward. This lemma states that if the PL-marginal contribu-
tions of player i and his subset of links � to 𝜂 ⊆ 𝛾 ⧵ 𝛾i (Manuel et al. 2020) coincide 
for games (N,  v) and (N,  w), ceteris paribus, then the change in the PL-marginal 
contributions corresponding to � and �∗ of this player in both games also coincide. In 

2  In Navarro (2019), we can find interesting results relating fairness to necessary players and the equal 
treatment property.



465

1 3

Marginality and the position value﻿	

other words, if the change in the value of the game does not affect the PL-marginal 
contributions, neither will it affect their variations.

Lemma 3.1  Suppose (N, v, �), (N,w, �) ∈ CS
N
0

 and i ∈ N . The following two state-
ments are equivalent: 

i)	 rv
�
(� ∪ �) − rv

�
(�) = rw

�
(� ∪ �) − rw

�
(�) , for all 𝜂 ⊆ 𝛾 ⧵ 𝛾i, 𝛿 ⊆ 𝛾i.

ii)	 rv
�
(� ∪ �) − rv

�
(� ∪ �∗) = rw

�
(� ∪ �) − rw

�
(� ∪ �∗) , for all 𝜂 ⊆ 𝛾 ⧵ 𝛾i, 𝛿, 𝛿

∗ ⊆ 𝛾i.

Proposition 3.1  The position value satisfies PL-marginality.3

Proof  Consider (N, v, �) , (N,w, �) ∈ CS
N
0

 and i ∈ N , such that 
rv
�
(� ∪ �) − rv

�
(�) = rw

�
(� ∪ �) − rw

�
(�) , for all 𝜂 ⊆ 𝛾 ⧵ 𝛾i, 𝛿 ⊆ 𝛾i . By the Lemma  3.1, 

this is equivalent to

For each l ∈ �i and each 𝜈 ⊆ 𝛾 ⧵ {l} , let us denote �i = � ∩ �i.
Taking in (1), � = � ⧵ �i , � = �i ∪ {l} and 𝛿∗ = 𝜈i ⊆ 𝛿 , we have

As a direct consequence,

which completes the proof. 	�  ◻

In the following proposition, we provide a characterization of the position value 
relaxing the balanced link contributions property in the one of Slikker (2005) but 
including the PL-marginality property. As mentioned in the introduction, this char-
acterization supports the use of the rule in applications in which the game changes, 
ceteris paribus; e.g., adaptation of cost allocations in a network over time.

Proposition 3.2  The position value is the unique allocation rule on CSN
0

 that satisfies 
efficiency in connected components, balanced link contributions for necessary play-
ers, and PL-marginality.

The proof of Proposition 3.2 can be found in the Appendix.

(1)rv
𝛾
(𝜂 ∪ 𝛿) − rv

𝛾
(𝜂 ∪ 𝛿∗) = rw

𝛾
(𝜂 ∪ 𝛿) − rw

𝛾
(𝜂 ∪ 𝛿∗) for all 𝜂 ⊆ 𝛾 ⧵ 𝛾i, 𝛿, 𝛿

∗ ⊆ 𝛾i.

rv
�
(� ∪ {l}) − rv

�
(�) = rw

�
(� ∪ {l}) − rw

�
(�).

�i(N, v, �) = �i(N,w, �),

3  PL-monotonicity property (Manuel et  al. 2020) implies PL-marginality, but both properties are not 
equivalent. The position value does not satisfy PL-monotonicity. A counterexample can be found in 
Ortega (2021).
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4 � Independence of axioms

This section is devoted to proving that the axioms used in the previous characteriza-
tion are independent. 

	 (i)	 Efficiency in connected components and PL-marginality do not imply balanced 
link contributions for necessary players.

		    The Myerson value satisfies efficiency in connected components and PL-
marginality, but it does not satisfy balanced link contributions for necessary 
players.

	 (ii)	 Efficiency in connected components and balanced link contributions for neces-
sary players do not imply PL-marginality .

		    Given a communication situation (N, v, �) ∈ CS
N
0

 , i ∈ N , and CN,�

i
 the con-

nected component in (N, �) to which i belongs, let (CN,�

i
)n be the set of all nec-

essary players in the game (N, v) that are in CN,�

i
 and (CN,�

i
)c
n
 its complementary 

in CN,�

i
 . Let us consider the allocation rule, � , that assigns to i ∈ N4

� satisfies efficiency in connected components and balanced link contribu-
tions for necessary players. However, it does not satisfy PL-marginality, 
because it does not coincide with the position value.

	 (iii)	 Balanced link contributions for necessary players and PL-marginality do not 
imply efficiency in connected components. Consider the rule � = 0.5�.

5 � A decomposition of the position value

Walking on the steps of Neyman (1989), Gómez et al. (2003), Béal et al. (2016) and 
González-Arangüena et al. (2017), it is possible to decompose additively the posi-
tion value into two values: the within groups position value (WG-position value) and 
the between groups position value (BG-position value).

The WG-position value of a player will represent the part of his position value 
obtained by his productivity in the characteristic function. For (N, v, �) ∈ CS

N
0

 and 
i ∈ N , it is defined as

�i(N, v, �) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�i(N, v, �), if (C
N,�

i
)n ≠ �

and i ∈ (C
N,�

i
)n,

v(C
N,�

i
)−

∑
j∈(C

N,�

i
)n
�j(N,v,�)

�(CN,�

i
)c
n
� , if (C

N,�

i
)c
n
≠ �

and i ∈ (C
N,�

i
)c
n
.

�W
i
(N, v, �) = �i(N, vi, �),

4  We abuse the notation using 
∑

j∈� �j(N, v, �) = 0.
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with vi(S) = v(S) − v(S ⧵ {i}) , for S ⊆ N.
The BG-position value of a player will be the part of his position value 

received by his intermediation in the connection of others. For (N, v, �) ∈ CS
N
0

 and 
i ∈ N , it is defined as

with v−i(S) = v(S ⧵ {i}) , for S ⊆ N.
To illustrate these definitions, let us consider the following example.

Example 5.1  Let (N, v, �) be the communication situation with N = {1, 2, 3} , v the 
characteristic function of the messages game given by

in which the value of a coalition is the number of messages that can be sent between 
his members. The graph is � = {{1, 2}, {2, 3}} . A possible representation of this 
graph is given in Fig. 1.

Then, we have that

The characteristic function of the link game is

and the position value is

Moreover

�B
i
(N, v, �) = �i(N, v−i, �),

v(S) =

⎧
⎪⎨⎪⎩

�
s

2

�
, if s ≥ 2,

0 otherwise,

Sh(N, v) = (1, 1, 1).

rv
�
= u{a} + u{b} + u{a,b},

�(N, v, �) =

(
3

4
,
3

2
,
3

4

)
.

r
vi
� =

⎧
⎪⎨⎪⎩

u{a} + u{a,b}, if i = 1,

u{a} + u{b}, if i = 2,

u{b} + u{a,b}, si i = 3,

Fig. 1   Graph (N, �)
1 2 3

a b
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and thus, �W(N, v, �) = (
3

4
, 1,

3

4
) . As clearly �W + �B = � , we have 

�B(N, v, �) = (0,
1

2
, 0).

We can observe that player 2, which is fully connected with the other two, has 
WP-position value (productivity via characteristic function) equal to his Shapley 
value. Players 1 and 3 (which are not directly connected) spend 1

4
 of their Shapley 

value rewarding player 2. He allows them to send messages to each other. As they 
are terminal nodes, they do not receive any intermediation fees. Then, the three units 
of the total value of the component (efficiency) can be decomposed in the productiv-
ity of the characteristic function preserved by the network ( 3

4
+

3

4
+ 1 ) which we will 

call WP-efficiency and the intermediation cost (BP-efficiency).

The WG-position value can be characterized in terms of WP-efficiency5 in 
connected components, balanced link contributions for necessary players, and 
marginality.

The BG-position value can be characterized using BP-efficiency6 in connected 
components, balanced link contributions for null players, and L-marginality.

The proofs of these characterizations are rather mechanical, similar to the proofs 
in Manuel et al. (2020), and Proposition 3.2 of this paper.

6 � Final remarks and conclusions

The following Table 1 contains a summary of the properties considered above (as 
well as other classics in the literature of the Myerson and position values) and their 
relationship with the different values. In this way, we can see which properties are 
(or are not) shared by different values. The symbol C is assigned to those proper-
ties that are used in a characterization of the corresponding value. We have used 
the results in this paper as well as the corresponding results in Manuel et al. (2020). 
Although some of them are not included in these papers, their proofs or counterex-
amples are straightforward, so it is left to the reader.

As a conclusion, a marginalist analysis of the position value allows to find addi-
tional parallelisms with the Myerson value. PL-marginality is a common property of 
the Myerson and the position value, and can be used to characterize them. Similarly, 
the marginality property is satisfied by the WG-position value and the WG-Myerson 
value, and both the BG-Myerson value and the BG-position value satisfy L-margin-
ality, these properties being useful in the respective characterizations.

5  A allocation rule � ∶ CS
N
0
→ ℝ

n satisfies WP-efficiency in connected components if given 
(N, v, �) ∈ CS

N
0

 and C ∈ N∕� , 
∑

i∈C 𝜓i(N, v, 𝛾) =
∑

S ⊆ C
Δv(S)𝛽𝛾 (S). As it can be seen, this efficiency 

is a linear combination of the dividends of the game in which the coefficients �� (S) are rather technical. 
They depend upon the relative degrees of nodes (of S) in the minimal connection graphs of the coalition 
S. Comparing these coefficients with the corresponding �� (S) in Manuel et al. (2020), we can see �� (S) 
depend on the proportion that nodes in S represent in the (set of nodes of them) minimal connection 
graphs of the coalition S. See Gómez et al. (2004) for details.
6  A allocation rule � ∶ CS

N
0
→ ℝ

n satisfies BP-efficiency in connected components if given 
(N, v, �) ∈ CS

N
0

 and C ∈ N∕� , 
∑

i∈C 𝜓i(N, v, 𝛾) =
∑

S ⊆ C
Δv(S)(1 − 𝛽𝛾 (S)).
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All these characterizations support the use of the respective rules when we 
need to adapt the distribution between individuals in a fixed network in economic 
situations in which the value changes over time.

Appendix

Proof of Proposition 3.2

It has already been proved that the position value satisfies PL-marginality. On the 
other hand, it is widely known that it verifies efficiency in connected components 
and balanced link contributions (Slikker 2005), and in particular, for necessary 
players.

Reciprocally, suppose � is an allocation rule in CSN
0

 satisfying these three 
properties. We will prove that �i(N, v, �) = �i(N, v, �) for all (N, v, �) ∈ CS

N
0

 and 
for all i ∈ N.

Consider the graph-restricted game (N, v� ) . For all i ∈ N , 𝛿 ⊆ 𝛾i, 𝜂 ⊆ 𝛾 ⧵ 𝛾i

Table 1   Summary of properties

M WG-M BG-M P WG-P BG-P

Efficiency in CC
√

/C × ×
√

/C × ×

W-efficiency in CC ×
√

/C × × × ×

B-efficiency in CC × ×
√

/C × × ×

WP-efficiency in CC × × × ×
√

/C ×

BP-efficiency in CC × × × × ×
√

/C
Balanced contributions

√
/C × × × × ×

Balanced contributions for necessary
√

/C
√

/C
√

× ×
√

Balanced contributions for null
√ √ √

/C ×
√

×

Balanced link contributions × × ×
√

/C × ×

Balanced link contributions for necessary × ×
√ √

/C
√

/C
√

Balanced link contributions for null ×
√

×
√ √ √

/C
Marginality ×

√
/C × ×

√
/C ×

L-marginality × ×
√

/C × ×
√

/C
PL-marginality

√
/C × ×

√
/C × ×

Equal treatment × × × × × ×

Equal treatment of necessary players
√

/C
√

/C
√

× ×
√

Equal treatment of null players ×
√

× ×
√

×

Fairness
√

/C × × × × ×

Fairness for necessary
√ √ √

× ×
√

Fairness for null
√ √ √

×
√

×
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As a connected component, C, of a subgraph of � is also connected in � , we have 
v� (C) = v(C) , and therefore

As � and � satisfy PL-marginality

and therefore, it is sufficient to prove the result for (N, v� , �).
The proof will use induction on d(N, v� ), the cardinality of 

�(N, v� ) = {S | Δv� (S) ≠ 0}.

Suppose (N, v, �) is such that d(N, v� ) = 0 . Then, each i ∈ N is a necessary player 
in v� . We will prove that, in this case, �i(N, v

� , �) = �i(N, v
� , �) by induction on |�|.

If |�| = 0 , then i is isolated in (N, �) and using component efficiency, 
�i(N, v

� , �) = v� ({i}) = 0 = �i(N, v
� , �) , which proves the result in this case.

By the induction hypothesis, let us assume that the result is proved for � with 
|�| ≤ r, r ≥ 0 and consider � , such that |�| = r + 1.

Let CN,�

i
 be the connected component in (N, �) to which i belongs. If CN,�

i
= {i} , 

using again efficiency in connected components, and similarly to the previous case, 
�i(N, v

� , �) = �i(N, v
� , �) = 0 . Otherwise, for all j ∈ C

N,�

i
 , using balanced link con-

tributions for necessary players, we have

and, as |𝛾 ⧵ {l}| < r + 1 and |𝛾 ⧵ {l�}| < r + 1 , using the induction hypothesis (on |�| 
) and that v� is the null game

Therefore

or

(let us observe that |�i| and |�j| are strictly positive).

rv
�

�
(� ∪ �) − rv

�

�
(�) =

∑
C∈N∕(�∪�)

v� (C) −
∑

C∈N∕�

v� (C).

∑
C∈N∕(�∪�)

v� (C) −
∑

C∈N∕�

v� (C) =
∑

C∈N∕(�∪�)

v(C) −
∑

C∈N∕�

v(C)

= rv
�
(� ∪ �) − rv

�
(�).

(2)
�i(N, v

�
, �) = �i(N, v, �),

�i(N, v
�
, �) = �i(N, v, �),

|�i|�j(N, v
� , �) −

∑
l∈�i

�j(N, v
� , � ⧵ {l}) = |�j|�i(N, v

� , �) −
∑
l�∈�j

�i(N, v
� , � ⧵ {l�}),

�i(N, v
� , � ⧵ {l�}) = �i(N, v

� , � ⧵ {l�}) = 0, l� ∈ �j,

�j(N, v
� , � ⧵ {l}) = �j(N, v

� , � ⧵ {l}) = 0, l ∈ �i.

|�j|�i(N, v
� , �) = |�i|�j(N, v

� , �),

�j(N, v
� , �) =

|�j|
|�i|�i(N, v

� , �) = c|�j| for all j ∈ C
N,�

i
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Using efficiency in connected components

which implies c = 0 and �i(N, v
� , �) = 0 = �i(N, v

� , �) , which completes the induc-
tion on |�| and the result for d(N, v� ) = 0.

Suppose now that the result is proved for communication situations (N, v, �) , 
such that d(N, v� ) ≤ k , k ≥ 0, and consider (N, v, �) with �(N, v� ) = {S1, ..., Sk+1} , 
and thus, d(N, v� ) = k + 1 . Then, v� =

∑k+1

m=1
Δv� (Sm)uSm . If i ∉ ∩k+1

m=1
Sm , i.e., if i is 

not a necessary player in (N, v� ) , let us define (v� )i =
∑

Sm∶i∈Sm
Δv� (Sm)uSm . For 

𝛿 ⊆ 𝛾i, 𝜂 ⊆ 𝛾 ⧵ 𝛾i , let CN,�∪�

i
 and CN,�

i
 be the connected components in (N, � ∪ �) and 

(N, �) , respectively, to which i belongs. Then

Taking into account that both � and � satisfy PL-marginality

As d(N, (v� )i) ≤ k , using the induction hypothesis

Thus, by (2), (3), and(4)

and the result is proved for i ∉ ∩k+1
m=1

Sm.
To finish, suppose now that i ∈ ∩k+1

m=1
Sm . Then, i is a necessary player in (N, v� ) . 

Let CN,�

i
 be the connected component in (N, �) to which i belongs.

If CN.�

i
= {i} , using component efficiency, both rules coincide. On the other hand, 

if i is the unique necessary player of (N, v� ) in his component, using the fact that 
both rules are the same for non-necessary players—as it is shown before—and the 
component efficiency, both rules coincide.

Let, then, j ≠ i , j ∈ C
N.�

i
 and j be a necessary player in (N, v� ).

We will prove that �i(N, v, �) = �i(N, v, �) by the induction hypothesis on |�| . If 
|�| = 1 , then CN.�

i
= {i, j} and as � satisfies balanced link contributions for necessary 

players

0 =
∑
j∈C

N,�

i

�j(N, v
� , �) =

∑
j∈C

N,�

i

c|�j|,

r
(v� )i
� (� ∪ �) − r

(v� )i
� (�) = (v� )i(C

N,�∪�

i
) − 0

= v� (C
N,�∪�

i
) − v� (C

N,�∪�

i
⧵ {i}) = rv

�

�
(� ∪ �) − rv

�

�
(�).

(3)
�i(N, (v

� )i, �) = �i(N, v
�
, �),

�i(N, (v
� )i, �) = �i(N, v

�
, �).

(4)�i(N, (v
� )i, �) = �i(N, (v

� )i, �).

�i(N, v, �) = �i(N, v
� , �) = �i(N, (v

� )i, �)

= �i(N, (v
� )i, �) = �i(N, v

� , �) = �i(N, v, �),

�i(N, v
� , �) − �i(N, v

� , � ⧵ {{i, j}}) = �j(N, v
� , �) − �j(N, v

� , � ⧵ {{i, j}}).
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In � ⧵ {{i, j}} , i and j are isolated, and using efficiency in connected components, 
�i(N, v

� , � ⧵ {{i, j}}) = �j(N, v
� , � ⧵ {{i, j}}) = 0.

Then, � assigns the same amount to i and j, v
� (C

N.�

i
)

2
 , quantity that coincides with 

the allocation of � to both players, because � also satisfies balanced link contribu-
tions for necessary players and efficiency in connected components.

Suppose now that the result is true if |�| ≤ r, r ≥ 1 , and consider |�| = r + 1 . As � 
satisfies balanced link contributions for necessary players

and, as |� ⧵ {l}| = |� ⧵ {l�}| ≤ r , using the induction hypothesis

On the other hand, � satisfies balanced link contributions for necessary players

and then

or equivalently

Therefore

for all j ∈ C
N.�

i
 , j necessary player in (N, v� ) (let us note that |�i| ≠ 0 and |�j| ≠ 0).

Using efficiency in connected components and that both rules coincide for non-
necessary players

where (CN,�

i
)n is the set of all necessary players in CN,�

i
 . Thus

Then, c = 0 and �i(N, v
� , �) = �i(N, v

� , �) , which completes the induction for r and 
k, and thus, the result is proved. 	�  ◻

|�i|�j(N, v
� , �) −

∑
l∈�i

�j(N, v
� , � ⧵ {l}) = |�j|�i(N, v

� , �) −
∑
l�∈�j

�i(N, v
� , � ⧵ {l�}),

|�i|�j(N, v
� , �) −

∑
l∈�i

�j(N, v
� , � ⧵ {l}) = |�j|�i(N, v

� , �) −
∑
l�∈�j

�i(N, v
� , � ⧵ {l�}).

|�i|�j(N, v� , �) −
∑
l∈�i

�j(N, v
� , � ⧵ {l}) = |�j|�i(N, v� , �) −

∑
l�∈�j

�i(N, v
� , � ⧵ {l�}),

|�i|�j(N, v
� , �) − |�j|�i(N, v

� , �) = |�i|�j(N, v� , �) − |�j|�i(N, v� , �),

|�i|[�j(N, v
� , �) − �j(N, v

� , �)] = |�j|[�i(N, v
� , �) − �i(N, v

� , �)].

�j(N, v
� , �) − �j(N, v

� , �) = |�j| 1

|�i| [�i(N, v
� , �) − �i(N, v

� , �)] = |�j|c,

∑
j∈(C

N,�

i
)n

�j(N, v
� , �) =

∑
j∈(C

N,�

i
)n

�j(N, v
� , �),

0 =
∑

j∈(C
N,�

i
)n

[�j(N, v
� , �) − �j(N, v

� , �)] =
∑

j∈(C
N,�

i
)n

|�j|c.
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