Operadores que preservan una familia de conjuntos. Operadores semitauberianos
- Hernando Botto, Beatriz
- Fernando Bombal Gordón Director
Universidad de defensa: Universidad Complutense de Madrid
Año de defensa: 1992
- Baltasar Rodríguez-Salinas Palero Presidente
- Pilar Cembranos Díaz Secretaria
- Manuel González Ortiz Vocal
- Fernando Cobos Díaz Vocal
- José Leandro de María González Vocal
Tipo: Tesis
Resumen
EN ESTA MEMORIA SE DA UNA EXTENSION DE LOS OPERADORES SEMI-FREDHOLM Y TAUBERIANOS CONSIDERANDOLOS COMO OPERADORES QUE PRESERVAN UNA FAMILIA DE CONJUNTOS, LOS RELATIVAMENTE COMPACTOS Y LOS DEBILMENTE RELATIVAMENTE COMPACTOS RESPECTIVAMENTE, PARA ELLO SE INTRODUCEN LAS DEFINICIONES DE "OPERADOR QUE PRESERVA UNA FAMILIA DE CONJUNTOS PO" Y "OPERADOR QUE CASI-PRESERVA UNA FAMILIA PO". APARTE DE ESTUDIAR ESTOS OPERADORES EN SU DEFINICION ORIGINAL SE ESTUDIAN LOS OPERADORES ASOCIADOS A LAS SIGUIENTES FAMILIAS DE CONJUNTOS: LOS LIMITADOS, LOS DUNFORD-PETTIS, LOS DEBILMENTE CONDICIONALMENTE COMPACTOS LOS V* Y LOS YA MENCIONADOS. ESTA PARTE DE LA MEMORIA SE EXPONE EN LOS CAPITULOS I Y III. EL CAPITULO II ESTA DEDICADO A LOS OPERADORES QUE PRESERVAN LOS CONJUNTOS DEBILMENTE CONDICIONALMENTE COMPACTOS, CONSIGUIENDO UNA CARACTERIZACION DE ESTOS OPERADORES Y DE LOS DE ROSENTHAL A TRAVES DEL OPERADOR BITRASPUESTO. POR ULTIMO EN EL CAPITULO IV SE DAN ALGUNAS APLICACIONES DE LOS RESULTADOS OBTENIDOS A LOS ESPACIOS DE FUNCIONES DE KOTHE, RELACIONANDOLOS CON EL CONOCIDO ESPACIO L1(U).