La topología estricta en espacios de funciones holomorfas
- Juan Ferrera Cuesta Director
Universidad de defensa: Universidad Complutense de Madrid
Año de defensa: 1989
- José Luis González Llavona Presidente
- Elena Martín Peinador Secretaria
- José María Isidro Gómez Vocal
- José María Martínez Ansemil Vocal
- Arturo Fernández Arias Vocal
Tipo: Tesis
Resumen
EL OBJETIVO PRINCIPAL DE LA TESIS ES DESCRIBIR LAS PROPIEDADES DEL ESPACIO H (U) = :U [/ ES HOLOMORFA Y ACOTADA DOTADO DE LA TOPOLOGIA ESTRICTA, B, TANTO COMO ESPACIO VECTORIAL TOPOLOGICO, COMO ALGEBRA TOPOLOGICA, SE PRESENTAN DIVERSAS PROPIEDADES DE (H (U],B) QUE ILUSTRAN LA ADECUACION DE LA TOPOLOGIA ESTRICTA - FRENTE A OTRAS TOPOLOGIAS CLASICAS EN ESPACIOS DE FUNCIONES HOLOMORFAS - PARA EL ESTUDIO DE H (U). EN PARTICULAR, SE DEMUESTRA LA COMPLETITUD DE (H (U),B), SE RELACIONA LA TOPOLOGIA ESTRICTA CON LA TOPOLOGIA DE LA NORMA Y SE DEDUCE LA IGUALDAD DE LA TOPOLOGIA DE LA CONVERGENCIA UNIFORME SOBRE LOS U-ACOTADOS CON LA TOPOLOGIA ESTRICTA CUANDO NOS RESTRINGIMOS A CONJUNTOS ACOTADOS PARA P (QUE COINCIDEN CON LOS ACOTADOS PARA LA NORMA). SE DEMUESTRA QUE LA TOPOLOGIA ESTRICTA ES UNA TOPOLOGIA MIXTA. SE ANALIZA LA RESTRICCION A LOS ESPACIOS DE POLINOMIOS DE LA TOPOLOGIA ESTRICTA SOBRE H (BE), CONCLUYENDO QUE COINCIDE CON LA TOPOLOGIA NATURAL (DE LA NORMA). DEMOSTRAMOS LA DENSIDAD DEL ESPACIO DE POLINOMIOS EN (H (U),B), LO QUE SE UTILIZA PARA DESCRIBIR LOS HOMOMORFISMOS DE ALGEBRAS SOBRE C, SOBRE OTROS ESPACIOS H (BF) Y HOMOMORFISMOS DE INTERPOLACION. EN EL ULTIMO CAPITULO, SE ESTUDIA EL ESPACIO HWULE), DETERMINANDO SU BIDUAL PARA CIERTOS ESPACIOS DE BANACH