Análisis no regular en variedades riemannaianas y aplicaciones a las ecuaciones de Hamilton-Jacobi

  1. López-Mesas Colomina, Fernando
Zuzendaria:
  1. Daniel Azagra Rueda Zuzendaria
  2. Juan Ferrera Cuesta Zuzendaria

Defentsa unibertsitatea: Universidad Complutense de Madrid

Fecha de defensa: 2004(e)ko urria-(a)k 28

Epaimahaia:
  1. José Luis González Llavona Presidentea
  2. Jesús Angel Jaramillo Aguado Idazkaria
  3. Raquel Gonzalo Palomar Kidea
  4. Robert Deville Kidea
  5. Lourdes Tello del Castillo Kidea
Saila:
  1. Análisis Matemático Matemática Aplicada

Mota: Tesia

Laburpena

El propósito de esta Tesis es triple. Primero, extender algunos resultados de minimización perturbada, como el principio variacional suave de Deville, Godefroy y Zizler, y otros resultados de localización de puntos casi críticos, como los teo-remas de Rolle aproximados al ámbito de las variedades riemannianas. Segundo,introducir una definición de subdiferencial para funciones definidas en variedades riemannianas, y desarrollar la teoría del cálculo subdiferencial en variedades riemannianas, de manera que las aplicaciones más conocidas del cálculo subdiferencial permanezcan en variedades riemannianas. Por ejemplo, vemos que cada funcion convexa en una variedad Riemanniana (o equivalentemente, una funcion convexa a lo largo de geodesicas) es subdiferenciable en casi todo punto (por otra parte, cada función continua es superdiferenciable en un conjunto denso, por tanto las funciones convexas son diferenciables en un subconjunto denso de su dominio). Tercero, utilizar estas teorías para probar la existencia y unicidad de soluciones de viscosidad de ecuaciones de Hamilton-Jacobi tenidas en variedades.