Stereo vision-based perception, path planning and navigation strategies for autonomous robotic exploration
- Correal Tezanos, Raul
- José Jaime Ruz Ortiz Doktorvater
- Gonzalo Pajares Doktorvater
Universität der Verteidigung: Universidad Complutense de Madrid
Fecha de defensa: 12 von Mai von 2015
- Jesús Manuel de la Cruz García Präsident
- María Guijarro Mata-García Sekretärin
- José María Sebastián Zúñiga Vocal
- Alberto Jardón Huete Vocal
- Pablo González de Santos Vocal
Art: Dissertation
Zusammenfassung
En esta tesis se trata el desarrollo de una estrategia de navegación autónoma basada en visión artificial para exploración robótica autónoma de superficies planetarias. Se han desarrollado una serie de subsistemas, módulos y software específicos para la investigación desarrollada en este trabajo, ya que la mayoría de las herramientas existentes para este dominio son propiedad de agencias espaciales nacionales, no accesibles a la comunidad científica. Se ha diseñado una arquitectura software modular multi-capa con varios niveles jerárquicos para albergar el conjunto de algoritmos que implementan la estrategia de navegación autónoma y garantizar la portabilidad del software, su reutilización e independencia del hardware. Se incluye también el diseño de un entorno de trabajo destinado a dar soporte al desarrollo de las estrategias de navegación. Éste se basa parcialmente en herramientas de código abierto al alcance de cualquier investigador o institución, con las necesarias adaptaciones y extensiones, e incluye capacidades de simulación 3D, modelos de vehículos robóticos, sensores, y entornos operacionales, emulando superficies planetarias como Marte, para el análisis y validación a nivel funcional de las estrategias de navegación desarrolladas. Este entorno también ofrece capacidades de depuración y monitorización.La presente tesis se compone de dos partes principales. En la primera se aborda el diseño y desarrollo de las capacidades de autonomía de alto nivel de un rover, centrándose en la navegación autónoma, con el soporte de las capacidades de simulación y monitorización del entorno de trabajo previo. Se han llevado a cabo un conjunto de experimentos de campo, con un robot y hardware real, detallándose resultados, tiempo de procesamiento de algoritmos, así como el comportamiento y rendimiento del sistema en general. Como resultado, se ha identificado al sistema de percepción como un componente crucial dentro de la estrategia de navegación y, por tanto, el foco principal de potenciales optimizaciones y mejoras del sistema. Como consecuencia, en la segunda parte de este trabajo, se afronta el problema de la correspondencia en imágenes estéreo y reconstrucción 3D de entornos naturales no estructurados. Se han analizado una serie de algoritmos de correspondencia, procesos de imagen y filtros. Generalmente se asume que las intensidades de puntos correspondientes en imágenes del mismo par estéreo es la misma. Sin embargo, se ha comprobado que esta suposición es a menudo falsa, a pesar de que ambas se adquieren con un sistema de visión compuesto de dos cámaras idénticas. En consecuencia, se propone un sistema experto para la corrección automática de intensidades en pares de imágenes estéreo y reconstrucción 3D del entorno basado en procesos de imagen no aplicados hasta ahora en el campo de la visión estéreo. Éstos son el filtrado homomórfico y la correspondencia de histogramas, que han sido diseñados para corregir intensidades coordinadamente, ajustando una imagen en función de la otra. Los resultados se han podido optimizar adicionalmente gracias al diseño de un proceso de agrupación basado en el principio de continuidad espacial para eliminar falsos positivos y correspondencias erróneas. Se han estudiado los efectos de la aplicación de dichos filtros, en etapas previas y posteriores al proceso de correspondencia, con eficiencia verificada favorablemente. Su aplicación ha permitido la obtención de un mayor número de correspondencias válidas en comparación con los resultados obtenidos sin la aplicación de los mismos, consiguiendo mejoras significativas en los mapas de disparidad y, por lo tanto, en los procesos globales de percepción y reconstrucción 3D.