Estimación de los efectos de la publicidad en las ventasun análisis empírico entre Alemania y España

  1. Sánchez Herrera, Joaquín
  2. Pintado Blanco, Teresa
  3. Avello Iturriagagoitia, Maria
  4. Abril Barrie, Carmen
Revista:
aDResearch: Revista Internacional de Investigación en Comunicación

ISSN: 1889-7304

Año de publicación: 2011

Número: 3

Páginas: 64-85

Tipo: Artículo

DOI: 10.7263/ADRESIC-003-03 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: aDResearch: Revista Internacional de Investigación en Comunicación

Resumen

Making reliable models has been one of the greatest concerns of the planning process in marketing in general, and communication in particular. Although some of the techniques used until now can be applied to such an end, the truth is that their results have not always satisfied the expectations of the company’s management. In this investigation we propose the need and possibility of knowing the influence of advertising on sales, although it could also be applied to other marketing variables. In order to do so, we have used panel data with an international perspective, delving specifically into the cases of Spain and Germany. The analysis has been carried out by means of neuronal networks, whose characteristics make them ideal for solving these kinds of problems.

Referencias bibliográficas

  • Abraham, M. & Lodish, L. (1987). An implemented system for improving promotion productivity using store scanner data. Marketing Science, 12 (3), 248-269.
  • Andersson , J. y Lyhagen, J. (1999). A long Memory Panel Unit Root Test: PPP revisited. Working Paper Series in Economics and Finance, Nº 3030. Stockholm School of Economics.
  • Arnold, S. J., Oum, T. H., Pazderka, B. & Snetsinger, D. W. (1987). Advertising quality in sales response models. Journal of Marketing Research, 24 (1), 106-113.
  • Assmus, G., Farley, J. U., & Lehmann, D. R. (1984). How Advertising Affects Sales: Meta-Analysis of Econometric Results. Journal of Marketing Research, 21(1), 65.
  • Baltagi, B. H., Heun Song, S., Cheol Jung, B. & Koh, W. (2007). Testing for serial correlation, spatial autocorrelation and random effects using panel data. Journal of Econometrics, 140 (1), 5-51.
  • Barksdale, H. C., Hilliard, J. B., Guffey Jr. & Hugh, J. (1974). Spectral analysis of advertising-sales interaction: an illustration. Journal of Advertising, 3 (4), 26-39.
  • Bass, F. M., & Clarke, D. G. (1972). Testing Distributed Lag Models of Advertising Effect. Journal of Marketing Research, 9(3), 298.
  • Beckwith, N. E. (1972). Multivariate Analysis of Sales Responses of Competing Brands to Advertising. Journal of Marketing Research, 9(2), 168.
  • Benesch, C. (1952). Sales Tests as a Measure of Advertising Effectiveness. Journal of Marketing, 17(2), 178.
  • Berkowitz, D., Allaway, A., & Souza, G. D. (2001). Estimating Differential Lag Effects for Multiple Media Across Multiple Stores. Journal of Advertising, 30 (4), 59-65.
  • Bernard, A. y Jones, C. (1986). Productivity across Industries and Countries: Time Series Theory and Evidence. Review of Economics and Statistics, 78, pp. 135-146.
  • Bhargava, A., Franzini, L. & Narendranathan, W. (1982). Serial correlation and the fixed effects model. Review of Economic Studies, 49, 533-549.
  • Breitung, J. & Meyer, W. (1994). Testing for unit roors in panel data: are wages on different bargaining levels cointegrated. Applied Economics, 26, 336-353.
  • Capps, O. (1989), Utilizing Scanner Data to Estimate Retail Demand Functions for Meat Products, American Agricultural Economics Association, 71 (3), 750-760.
  • Chee Wooi, L. & Kirikoshi, T. (2008). Understanding the effects of pharmaceutical promotion: a neural network approach guided by genetic algorithm-partial least squares. Health Care Management Science, 11(4), 359-372.
  • Clarke, D. G. (1973). Sales-Advertising Cross-Elasticities and Advertising Competition. Journal of Marketing Research, 10(3), 250.
  • Clarke, D. G. (1979). Measuring the Cumulative Effects of Advertising on Sales: A Response to Peles. Journal of Marketing Research, 16(2), 286.
  • Danaher, P. J., Bonfrer, A., & Dhar, S. (2008). The Effect of Competitive Advertising Interference on Sales for Packaged Goods. Journal of Marketing Research, 45(2), 211-225.
  • Demirdjian, Z. S. (1983). Sales effectiveness of comparative advertising: an experimental field investigation. Journal of Consumer Research, 10 (3), 362-364.
  • Dhar, S. K. y Hoch, S. J. (1996), Price Discrimination Using In-Store Merchandising, Journal of Marketing, 60 (1), 17-30.
  • Dubé, J.-P., & Manchanda, P. (2005). Differences in Dynamic Brand Competition Across Markets: An Empirical Analysis. Marketing Science, 24(1), 81-95.
  • Dubinsky, A. J., Barry, T. E. & Kerin, R. A. (1981). The salesadvertising interface in promotion planning. Journal of Advertising, 10 (3), 35-41.
  • Farris, P. W. & Reibstein, D. J. (1984). Overcontrol in advertising experiments. Journal of Advertising Research, 24(3), 37-42.
  • Franses, P. H. (2006). Estimating confidence bounds for advertising effect duration intervals. Journal of Marketing, 35(2), 33-37.
  • Freeman, P. & Rennolls, K. (1994). Modelling methodology: basics to neural nets. A return to ignorance? Journal of the Marketing Research Society, 36 (1), 69-77.
  • Gius, M.P. (2004). Analysis of advertising in the US cigarette industry. Journal of Business & Economic Studies, 10 (1), 29-34.
  • Gold, L. N. (1992). Let’s heavy up in St. Louis and see what happens. Journal of Advertising Research, 32 (6), 31-38.
  • Gómez, Carmen (1997), ¿Qué pasa con las Promociones en el Punto de Venta?, IPMark, 482, 44-46.
  • Hadri, K. (1998). Testing for Stationarity in Heterogeneous Panel Data. Working Paper. Department of Economics. City University. London.
  • Hadri, K. (1999). Testing the Null Hypothesis of Stationarity against the Alternative of a Unit Root in Panel Data with Serially Correlated Errors. Working Paper. Department of Economics. City University. London.
  • Hansen, F., Hansen, L. Y., & Grønholdt, L. (2002). Modelling purchases as a function of advertising and promotion. International Journal, (1979), 115-135.
  • Helmer, R. M., & Johansson, Johny K. (1977). An Exposition of the Box-Jenkins Transfer Function Analysis with an Application to the Advertising-Sales Relationship. Journal of Marketing Research, 14(2), 227.
  • Holak, S. L., & Tang, Y. E. (1990). Advertising’s Effect on the Product Evolutionary Cycle. Journal of Marketing, 54(3), 16.
  • Hruschka, H. (2001). An artificial neural net attraction model (ANNAM) to analyze market share effects of marketing instruments. Schmalenbach Business Review, 53 (1), 27-40.
  • Hruschka, H. & Natter, M. (1999). Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation. European Journal of Operational Research, 114 (2), 346-353.
  • Inman, J. J. & Mcalister, L. (1993). A Retailer Promotion Policy Model Considering Promotion Signal Sensitivity, Marketing Science, 12 (4), 339-356.
  • Johansson, J. K. (1979). Advertising and the S-Curve: A New Approach. Journal of Marketing Research, 16(3), 346.
  • Kvaal, K. & Djupvik, H. (1996). Prediction of customer segments with neural nets. Marketing&Research Today, 29, 247-253.
  • Kwiatkowski, D., Phillips, P.C., Schmidt, P.J. & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic series have a unit root?. Journal of Econometrics, 56, 285-302.
  • Leach, D., & Reekie, W. D. (1996). A natural experiment of the effect of advertising on sales: the SASOL case. Applied Economics, 28(9), 1081-1091.
  • Levin, A. & Lin, C. (1992). Unit root tests in panel data: asymptotic and finite-sample properties. Discussion paper 92-23.
  • Litwak, D. (1996), What price sales glory?, Supermarket Business, 51 (7), 25-35.
  • Luan, Y. J., & Sudhir, K. (2010). Forecasting Marketing-Mix Responsiveness for New Products. Journal of Marketing Research, 47(3), 444-457.
  • Mann, D. H. (1975). Optimal Theoretic Advertising Stock Models: A Generalization Incorporating the Effects of Delayed Response from Promotional Expenditure. Management Science, 21(7), 823-832.
  • Moore, K., Burbach, R. & Heeler, R. (1995). Using neural nets to analyze qualitative data. Marketing Research, 7 (1), 34-39.
  • Mulhern, F. J. & Padgett, D. T. (1995), The Relationship Between Retail Price Promotions and Regular Price Purchases, Journal of Marketing, 59 (4), 83-90.
  • Narasimhan, C., Neslin, S. A. & Sen, S. K. (1996), Promotional Elasticities and Category Characteristics, Journal of Marketing, 60 (2), 17-30.
  • Parsons, L. J. (1976). A Rachet Model of Advertising Carryover Effects. Journal of Marketing Research, 13(1), 76.
  • Peles, Y. C. (1979). Econometric Measurement of the Duration of Advertising Effect on Sales: A Comment. Journal of Marketing Research, 16(2), 284.
  • Poh, H., Jingtao, Y. & Teo, J. (1998). Neural networks for the analysis and forecasting of advertising and promotion impact. International Journal of Intelligent Systems in Accounting Finance & Management, 7 (4), 253-268.
  • Silva, M., Moutinho, L., Coelho, A. & Marques, A. (2009). Market orientation and performance: modleling a neural network. European Journal of Marketing, 43 (3/4), 421-437.
  • Simester, D., Hu, Y. (Jeffrey), Brynjolfsson, E., & Anderson, E. T. (2009). Dynamics of Retail Advertising: Evidence From a Field Experiment. Economic Inquiry, 47(3), 482-499.
  • Suárez, M.G. (2005). Shelf space assigned to store and national brands: a neural networks analysis. International Journal of Retail & Distribution Management, 33 (11), 858-878.
  • Tellis, G. J., & Weiss, D. L. (1995). Does TV Advertising Really Affect Sales? The Role of Measures, Models, and Data Aggregation. Journal of Advertising, 24 (3), 1-20.
  • Vanecko, J.J. & Russo, A.W. (1999). Data mining and modeling as a marketing activity. Direct Marketing, 62 (5), 52-55.
  • Vivaracho, C.E. & Moro, Q.I. (2001). A comparative study of MLP-based artificial neural networks in text-independent speaker verification against GMM-based systems. Eurospeech Scandinavia.
  • Winer, R. S. (1980). A Longitudinal Model to Decompose the Effects of an Advertising Stimulus on Family Consumption. Management Science, 26(1), 78-85.
  • Wittink, Dick R.; M. J. Addona; W. J. Hawkes & J. C. Porter (1987), SCANPRO: a model to measure short-term effects of promotional activities on brand sales, based on storelevel scanner data, Working Paper, Johnson Graduate School of Management, Cornell University, Ithaca, New York.
  • Yustas López, Yolanda (1997), Avanzando en el Análisis de la Actividad Promocional. La Nueva Tecnología Escáner, MK. Marketing+Ventas, 120, 35-39.
  • Zahavi, J. & Levin, N. (1997). Applying neural computing to target marketing. Journal of Direct Marketing, 11 (1), 5-22.
  • Zhang, Y., Jansen, B.J. & Spink, A. (2009). Identification of factors predicting clickthrough in Web searching using neural netword analysis. Journal of the American Society for Information Science & Technology, 60 (3), 557-570.