Geometría de curvas racionales en grassmannianas
- Ortega Rodrigo, Daniel
- Rafael Hernández García Director
Universidade de defensa: Universidad Autónoma de Madrid
Ano de defensa: 1999
- Ignacio Sols Lucia Presidente
- Óscar García Prada Secretario/a
- Juan Antonio Navarro González Vogal
- Enrique Arrondo Esteban Vogal
- Javier Finat Codes Vogal
Tipo: Tese
Resumo
En este trabajo se estudia la cohomología del espacio de morfismos, de grado d, de la recta proyectiva en una Grassmanniana. Se calculan bases en los grupos de cohomología, H elevado 2k(R(n,r,d),Z), R(n,r,d), que es una variedad proyectiva, conexa y lisa, de este espacio de morfismos. Esta compactificación es el esquema Quot, definido por A. Grothendieck, que parametriza haces cociente del fibrado trivial de rango n sobre la recta, con rango r y grado d fijados. Los grupos de cohomología impar del esquema Quot se anulan, y los pares coinciden con los grupos de Chow. Se construyen en esta tesis bases para los grupos correspondientes bases duales de ciclos de dimensión k. Los primeros a partir de condiciones de paso, en momentos determinados ono, de curvas racionales en la Grassmanniana, por subvariedades de Schubert especiales en la misma. Los segundos, tienen una definición que permite considerar, asociadas a ellos, subvariedades lineales en la Grassmanniana. De esta manera se reduce el cálculo de los números de intersección de los correspondientes ciclos en el esquema de Quot, al de números de intersección para los ciclos asociados a ambos tipos de subvariedades en la Grassmanniana.