Tolerancia del alcohol en ratas sometidas a diferentes períodos de consumo agudo y crónico de etanol

  1. Luque, Javier
  2. García Moreno, Luis Miguel
  3. Capilla, Almudena
  4. García Sánchez, Olga
  5. Senderek, Kamila
  6. Arias Pérez, Jorge Luis 1
  7. Conejo Jiménez, Nélida María 1
  1. 1 Universidad de Oviedo
    info

    Universidad de Oviedo

    Oviedo, España

    ROR https://ror.org/006gksa02

Aldizkaria:
Psicothema

ISSN: 0214-9915

Argitalpen urtea: 2004

Alea: 16

Zenbakia: 2

Orrialdeak: 211-216

Mota: Artikulua

Beste argitalpen batzuk: Psicothema

Laburpena

The development of tolerance to the effects of ethanol is not uniform and may vary according to the actual and previous pattern of consumption. In this experiment we assessed body temperature and the recovery of two reflexes after a high dose of ethanol in rats submitted to chronic and acute ethanol consumption. Animals were previously submitted to chronic or acute alcohol consumption from postnatal day 21 until postnatal days 56 and 84. On the testing days, the animals received a single dose of 25% ethanol (5 g/kg, i.p.) or the same amount of saline solution. The results showed that animals were affected in the day 56 to a greater extent than in the day 84 by chronic heavy consumption of ethanol solution. With moderate and acute ethanol consumption, the 56-day-old animals developed greater tolerance. However, tolerance was not developed for the motor-impairing effects, since all groups required a long time to recover reflexes.

Erreferentzia bibliografikoak

  • Acheson, A.K., Richardson, R. and Swartzwelder, H.A. (1999). Developmental changes in seizure susceptibility during ethanol withdrawal. Alcohol, 18: 23-26.
  • American Psychiatryc Association, (1994). Diagnostic and Statistical Manual of Mental Disorders. Fourth Edition (DSM-IV). American Psychiatryc Association. Washington, DC.
  • Capretta, P.J., Petersik, J.T. and Stwart, D.J. (1975). Acceptance of novel flavors is increased after early experience of diverse tastes. Nature, 254, 689-691.
  • Chandler, L.J., Harris, R.A. and Crews, F.T. (1998). Ethanol tolerance and synaptic plasticity. Trends in Pharmacological Sciences, 19, 491-495.
  • Cheema, Z.F., West, J.R. and Miranda, R.C. (2000). Ethanol induces Fas/Apo [apoptosis]-1 nRNA and cell suicide in the developing cerebral cortex. Alcoholism Clinical and Experimental Research, 24, 535-543.
  • Crabbe, J.C., Feller, D.J., Terda, E.S. and Merrill, C.D. (1990). Genetic components of ethanol responses. Alcohol, 7, 245-249.
  • Crabbe, J.C., Janovsky, J.S., Young, E.R., Kosobud, A., Stack, J. and Rigter, H. (1982). Tolerance to ethanol hypothermia in imbred mice: genotypic correlations with behavioral responses. Alcoholism Clinical and Experimental Research, 6, 446-458.
  • Crews, F.T., Steck, J.C., Chandler, L.J., Yu, C.J. and Day, A. (1998). Ethanol, stroke, brain damage, and excitotoxicity. Pharmacology Biochemistry and Behavior, 59, 981-991.
  • Crowell, C.R., Hinson, R.E. and Siegel, S. (1981). The role of conditional drug response in tolerance to the hypothermic effects of ethanol. Psychopharmacology, 73, 51- 54.
  • De Bellis, M.D., Clark, D.B., Beers, S.R., Soloff, P.H., Boring, A.M., Hall, J., Kersh, A. and Keshavan, M.S. (2000). Hippocampal volume in adolescent-onset alcohol use disorders. The American Journal of Psychiatry, 157, 737-744.
  • Devaud, L.L. (2001). Ethanol dependence has limited effects on GABA or glutamate transporters in rat brain. Alcoholism Clinical and Experimental Research, 25, 606-611.
  • Duncan, P.M., Alici, T. and Woodward, J.D. (2000). Conditioned compensatory response to ethanol as indicated by locomotor activity in rats. Behavioural Pharmacology, 11, 395-402.
  • García-Moreno, L.M., Corcuera, M.T., Conejo, N.M., Martín, F.R., Gómez, M. and Alonso, M.J. (1998). Alteraciones hepáticas en un modelo de alcoholismo en ratas. Anual de Medicina Interna, 15, 241- 245.
  • Germani, E., Suck, M.L.T., Di Giulio, A.M. and Gorio, A. (1999). Perinatal supplementation of low doses of ethanol enhances 5-HT restoration in the central nervous system. Journal of Neuroscience Research, 58, 449-455.
  • Gómez Fraguela, J.A., Luengo Martín, A. and Romero Triñanes, E. (2002). Prevención del consumo de drogas en la escuela: cuatro años de seguimiento de un programa. Psicothema, 14(4), 685-692.
  • Grant, K.A. and Lovinger, D.M. (1995). Cellular and behavioral neurobiology of alcohol: receptor-mediated neuronal processes. Clinical Neuroscience, 3, 155-164.
  • Grobin, A.C., Matthews, D.B., Devaud, L.L. and Morrow, A.L. (1998). The role of GABA(A) receptors in the acute and chronic effects of ethanol. Psychopharmacology, 139, 2-19.
  • Hindmarch, I., Kerr, J.S. and Sherwood, N. (1991). The effects of alcohol and other drugs on psychomotor performance and cognitive function. Alcohol Alcohol, 26, 71.
  • Khanna, J.M., Chau, A. and Shah, G. (1996). Characterization of the phenomenon of rapid tolerance to ethanol. Alcohol, 13, 621-628.
  • Khanna, J.M., Kalant, H., Weiner, J. and Shah, G. (1992). Rapid tolerance and cross-tolerance as predictors of chronic tolerance and crosstolerance. Pharmacology Biochemistry and Behavior, 41, 355-360.
  • Khanna, J.M., Shah, G. and Chau, A. (1997). Effect of NMDA antagonists on rapid tolerance to ethanol under two different testing paradigms. Pharmacology Biochemistry and Behavior, 57, 693-697.
  • Lamminpa, A. (1995). Alcohol intoxication in childhood and adolescence. Alcohol Alcohol, 30, 5-12.
  • Le, A.D., Khanna, J.M. and Kalant, H. (1984). Effect of treatment dose and test system on the development of ethanol tolerance and physical dependence. Alcohol, 1: 447-451.
  • Lomax, P., Bajorek, J.G., Chesarek, W.A. and Chafee, R.R. (1980). Ethanol-induced hypothermia in the rat. Pharmacology, 21, 288-294.
  • Markwiese, B.J., Acheson, S.K., Levin, E.D., Wilson, W.A. and Swartzwelder, H.S. (1998). Differential effects of ethanol on memory in adolescent and adult rats. Alcoholism Clinical and Experimental Research, 22, 416-421.
  • Maylor, E.A. and Rabbitt, P.M.A. (1993). Alcohol, reaction time and memory: a meta-analisys. British Journal of Psychology, 84, 301-317.
  • Meldrum, B. and Gartwaite, J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends in Pharmacological Sciences, 11, 379-387.
  • Nagy, J., Muller, F. and Laszlo, L. (2001). Cytotoxic effect of ethanolwithdrawal on primary cultures of cortical neurons. Drug and Alcohol Dependence, 61, 155-162.
  • Naranjo, C.A. and Bremner, K.E. (1993). Behavioural correlates of alcohol intoxication. Addiction, 88, 25-35.
  • Neznanova, O.N., Blokhina, E.A., Sukhotina, I.A. and Bespalov, A.Y. (2000). Motor impairment produced by ethanol and site-selective NMDA receptor antagonists in micetolerance and cross-tolerance. Alcohol, 20, 31-36.
  • Olney, J.W. (1990). Excitotoxin-mediated neuron death in youth and old age. Progress in Brain Research, 86, 37-51.
  • Orrenius, S., McConkey, D.J., Bellomo, G. and Nicotera, P. (1989). Role of Ca2+ in toxic cell killing. Trends in Pharmacological Sciences, 10, 281-285.
  • Pellis, S.M. and Pellis, V.C. (1994). Development of righting when falling from a bipedal standing posture: evidence for the dissociation of dynamic and static righiting reflexes in rats. Physiology and Behavior, 56, 659-663.
  • Pellis, S.M., Pellis, V.C. and Nelson, J.E. (1992). The development of righting reflexes in the pouch young of the marsupial Dasyurus Hallucatus. Developmental Psychobiology, 25, 105-125.
  • Pellis, S.M., Pellis, V.C. and Whishaw, I.Q. (1996). Visual modulation of air righting by rats involves calculation of time-to-impact, but does not require the detection of the looming stimulus of the approaching ground. Behavioural Brain Research, 74, 207-211.
  • Peris, J, and Cunningham, C.L. (1987). Stress enhances the development of tolerance to the hypothermic effect of ethanol. Alcohol and Drug Research, 7, 187-193.
  • Pohorecky, L.A., Brick, J. and Carpenter, J.A. (1986). Assessment of the development of tolerance to ethanol using multiple measures. Alcoholism Clinical and Experimental Research, 10, 616-622.
  • Pyapali, G.K., Turner, D.A., Wilson, W.A. and Swartzwelder, H.S. (1999). Age and dose-dependent effects of ethanol on the induction of hippocampal long-term potentiation. Alcohol, 19, 107-111.
  • Rodríguez Franco, L., Padilla Muñoz, E., Caballero, R. and Rodríguez, J. (2002). Ansiedad en hijos de padres alcohólicos en tratamiento. Psicothema, 14(1), 9-18.
  • Silva, S.M., Paula-Barbosa, M.M. and Madeira, M.D. (2002). Prolonged alcohol intake leads to reversible depression of corticotropin-releasing hormone and vasopressin immunoreactivity and mRNA levels in the parvocellular neurons of the paraventricular nucleus. Brain Research, 954, 82-93.
  • Smothers, C.T., Mrotek, J.J. and Lovinger, D.M. (1997). Chronic ethanol exposure leads to a selective enhancement of N-methyl-D-aspartate receptor function in cultured hippocampal neurons. Journal of Pharmacology and Experimental Therapeutics, 283, 1214-1222.
  • Steffensen, S.C., Nie, Z., Criado, J.R. and Siggins, G.R. (2000). Ethanol inhibition of N-metyl-D-aspartate receptors involves presynaptic gamynobutiric acid (B) receptors. Journal of Pharmacology and Experimental Therapeutics, 294, 637-697.
  • Swartzwelder, H.S., Richardson, R.C., Markwiese-Foerch, B., Wilson, W.A and Little, P.J. (1998). Developmental differences in the acquisition of tolerance to ethanol. Alcohol, 4, 311-314.
  • Swartzwelder, H.S., Wilson, W.A. and Tayyeb, M.Y. (1995). Agedependent inhibition of long-term potentiation by ethanol in inmature vs mature hippocampus. Alcoholism Clinical and Experimental Research, 19, 1480-1485.
  • Tang, M. and Falk, J.L. (1986). Chronic alcohol dependence and waterelectrolyte status. Alcohol, 3, 33-37.
  • Tracy, H.A. and Wayner, M.J. (1998). Losartan blocks diazepam and ethanol effects on air righting. Alcohol, 16, 93-99.
  • Tracy, H.A., Wayner, M.J. and Armstrong, D.L. (1999). Nicotine blocks ethanol and diazepam impairment of air righting and ethanol impairment of maze performance. Alcohol, 18, 123-130.
  • Vazquez, D.M. (1998). Stress and the developing limbic-hypothalamicpituitary-adrenal axis. Psychoneuroendocrinology, 23, 663-700.