Cobertura nival y distribución de las temperaturas en el suelo en las cumbres de la Sierra de Guadarrama

  1. Andrés de Pablo, Nuria de 1
  2. Palacios Estremera, David 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters

ISSN: 0211-6820 1697-9540

Año de publicación: 2010

Volumen: 36

Número: 2

Páginas: 7-38

Tipo: Artículo

DOI: 10.18172/CIG.1236 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Resumen

El trabajo muestra el resultado de la monitorización de la temperatura del aire y del suelo en el periodo 2002 - 2007, en las proximidades de la cumbre del Alto de las Guarramillas (2258 m; 40º 47' 10'' N y 3º 58' 46'' W), situada en el sector central de la Sierra de Guadarrama, a 50 km de Madrid. La temperatura del aire se midió en la cumbre y la del suelo en tres lugares distintos, según el diferente grado de permanencia de la nieve en el suelo: en la cumbre, en el interior de un nicho nival situado en la vertiente oriental de esta cumbre, el Ventisquero de la Condesa, y en el sector pronival de este nicho. Por otro lado, se monitorizó la permanencia y espesor de la nieve sobre cada termómetro del suelo. Los resultados indican que, mientras la temperatura estival del suelo es idéntica en los tres puntos de control y simétrica en sus cambios a la del aire, durante la temporada nival la temperatura del suelo varía de forma considerable según el punto de medición, en relación con el espesor y duración de la nieve que soporte y puede no tener ninguna relación con la evolución de la temperatura del aire. A la hora de considerar la importancia de los cambios de fase del agua contenida en el suelo sobre los procesos geomorfológicos o sobre la cubierta vegetal, es fundamental el tener en cuenta el espesor y, sobre todo, la duración de la nieve, ya que este factor puede ocasionar el cambio brusco del régimen térmico del suelo en sólo unos pocos metros de diferencia.

Referencias bibliográficas

  • ANDRÉS, N., PALACIOS, D. (2004). Interrelación Nieve / Geomorfología en la Sierra de Guadarrama: altas cuencas del Ventisquero de la Condesa y Valdemartín, Cuadernos de Investigación Geográfica, 30: 83-113.
  • ANDRÉS, N., GARCÍA-ROMERO, A., MUÑOZ, J., PALACIOS, D. (2007a). Characterization of nivation areas in Mediterranean mountains: Manzanares Headvalley, Sierra de Guadarrama (Spain). Zeitschrift für Geomorphologie, 51 Suppl. 2: 91-111.
  • ANDRÉS, N., PALACIOS, D., MARCOS, F. J. (2007b). Bottom temperature of snow and its geomorphologic significance in Mediterranean Mountains (Sierra de Guadarrama, Spain). Geophysical Research Abstracts, 9: 05639.
  • BALLANTYNE, C. K. (1978). The hydrological significance of nivation features in permafrost areas. Geographiska annaler, 60A: 51-54.
  • CHRISTIANSEN, H. H. (1996). Nivation forms, processes and sediments in recent and former periglacial areas. Geographica Hafniensia A4, 185 pp., Copenhagen.
  • DARMODY, R. G., THORN, C. E., HARDER, R. L., SCHYLTER, J. P. L., DIXON, J. C. (2000). Weathering implications of water chemistry in an arctic-alpine environment, northern Sweden. Geomorphology, 34: 89-100.
  • EKBLAW, W. E. (1918). The importance of nivation as an erosive factor, and on soil flow as a transporting agency, in northern Greenland. Proceedings National Academy of Science, 4: 288-293.
  • GADEK, B., LESZKIEWICZ, J. (2009). Influence of snow cover on ground surface temperature in the zone of sporadic permafrost, Tatra Mountains, Poland and Slovakia. Cold Regions Science and Technology. Doi: 10.1016/j.coldregions.2009.10.004.
  • GARCÍA-ROMERO, A., MUÑOZ, J., ANDRÉS, N., PALACIOS, D. (2009). Relationship between climate change and vegetation distribution in the Mediterranean Mountains: Manzanares Head valley, Sierra de Guadarrama (Central Spain). Climatic Change (aceptado). Doi: 10.1007/s10584-009-9727-7.
  • GARDENER, J. (1969). Snowpacthes: their influence on mountain wall temperatures and the geomorphologic implications. Geografiska Annaler, 51A: 114120.
  • GOODRICH, E. L. (1982). The influence of snow cover on the ground thermal regime. Canadian Geotechnical Journal, 19: 421-432.
  • GRAWE, O. R. (1936). Ice as agent of rock weathering: a discussion. Journal of Geology, 44: 173-182.
  • HALL, K. (1980). Freeze-thaw activity at nivation site in northern Norway. Artic and Alpine Research, 12: 183-194.
  • HALL, K. (1985). Some observations on ground temperatures and transport processes at a nivation site in northern Norway. Norsk Geografisk Tidsskrift, 39: 27-37.
  • HALL, K. (1993). Enhanced bedrock weathering in association with late-lying snowpatches: evidence from Livingstone Island. Antarctica. Earth Surface Processes and Landforms 18, 121-129.
  • HALL, K., THORN, C. E., MATSUOKA, M., PRICK, A. (2002). Weathering in cold regions: some thoughts and perspectives. Progress in Physical Geography, 26: 577-603.
  • HOBBS, W. H. (1910). The cycle of mountain glaciation. The Geographical Journal, 35: 146-163 y 268-284.
  • ISHIKAWA, M. (2003): Thermal regimes at the snow–ground interface and their implications for permafrost investigation. Geomorphology, 52: 105-120.
  • KARIYA, Y. (2002). Geomorphic processes at a snowpacth hollow on Gassan Volcano, Northern Japan. Permafrost and Periglacial Processes, 13: 107-116.
  • LEWIS, W. V. (1936). Nivation, River grading and shoreline development in South-East Iceland. Geographical Journal, 88: 431-447.
  • LEWIS, W. V. (1939). Snow patch erosion in Iceland. Geographical Journal, 94: 153-161.
  • LING, F., ZHANG, T. (2007) Modelled impacts of changes in tundra snow thickness on ground thermal regime and heat flow to the atmosphere in Northernmost Alaska. Global and Planetary Change, 57: 235-246.
  • MCCABE, L. H. (1939). Nivation and corrie erosion in West Spitsbergen. Geographical Journal, 94: 447-465.
  • MARCOS, F. J., PALACIOS, D. (2004). Efectos de la nieve y la temperatura del suelo en la actividad geomorfológica: primeros resultados de su monitorización en la Sierra de Guadarrama, España. Boletín de la Real Sociedad Española de Historia Natural, 99 (1-4): 25-36.
  • MATTHES, F. E. (1900). Glacial sculpture of the Bighorn Mountains, Wyoming, U.S. Geological Survey 21st Annual Report 1899-1900: 167-190.
  • MELLANDER, P. E., LAUDON, H., BISHOP, K. (2005). Modelling variability of snow depths and soil temperatures in Scots pine stands. Agricultural and Forest Meteorology, 133: 109-118.
  • MUÑOZ JIMÉNEZ, J., GARCÍA-ROMERO, A. (2004). Modificaciones climáticas y evolución de la cubierta vegetal en las áreas culminantes de la Sierra de Guadarrama durante la segunda mitad del siglo XX: las altas cuencas del Ventisquero de la Condesa y de Valdemartín, Cuadernos de Investigación Geográfica, 30, págs. 117-146.
  • MUÑOZ, J., GARCÍA, A., ANDRÉS, N., PALACIOS, D. (2007). La vegetación del Ventisquero de la Condesa (Sierra de Guadarrama, Madrid) y sus condiciones termo-nivales. Boletín de la AGE. 44: 29-52.
  • NYBERG, R. (1991). Geomorphic processes at snowpatch sites in the Abisko mountains, northern Sweden, Zeitschrift für Geomorphologie N.F. 35(3): 321-343.
  • RACZKOWSKA, Z. (1995). Nivation in the High Tatras, Poland. Geografiska Annaler 77A (4): 251-258.
  • ROZET, M. (1855). Notes on the differences of temperature between the air, the ground under snow, and the ground from which the snow has been removed. Journal of the Franklin Institute, 59 (4): 270-271.
  • THORN, C. E. (1976). Quantitative evaluation of nivation in the Colorado Front Range, Geological Society of America Bulletin, 87: 1.169-1.178.
  • THORN, C. E. (1979). Ground temperatures and surficial transport in colluvium during snowpatch; Colorado Front Range. Earth Surface Processes 4, 211-228.
  • THORN, C. E. (1988). Nivation: a Gemorphic Chimera. En: Advances in Periglacial Geomorphology (Clark, M.J., Ed.). John Wiley & Sons Ltd, pp. 3-31, Chichister.
  • THORN, C. E., HALL, K. (1980). Nivation: an arctic-alpine comparison and reappraisal. Journal of Glaciology, 25: 109-124.
  • THORN, C. E., HALL, K. (2002). Nivation and cryoplanation: the case for scrutiny and integration. Progress in Physical Geography, 26(4): 633-550.
  • VIEIRA, G., MORA, C., RAMOS, M. (2003). Ground temperature regimes and geomorphological implications in a Mediterranean mountain (Serra da Estrela, Portugal). Geomorphology, 52 (2003) 57-72.
  • WILLIAMS, J. E. (1949). Chemical weathering at low temperaturas. Geographical Review, 1: 129-135.
  • ZHANG, Y., WANG, Y., BARR A. G., BLACK ,T. A. (2008). Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Regions Science and Technology, 52: 355-370.