Contribución de los isótopos de He al origen de los fluidos hidrotermalesaplicación al estudio de las mineralizaciones de fluorita de Asturias (N de España)

  1. Vindel Catena, Elena
  2. Corbella Cordomí, Mercè
  3. Cardellach López, Esteve
  4. Sánchez, V.
  5. Martín-Crespo, V.
Journal:
Estudios geológicos

ISSN: 0367-0449

Year of publication: 2010

Volume: 66

Issue: 1

Pages: 75-82

Type: Article

DOI: 10.3989/EGEOL.40168.111 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Estudios geológicos

Sustainable development goals

Abstract

En este trabajo se ha realizado un estudio de isotopos de He con objeto de determinar la influencia mantelica o cortical de los volatiles en los fluidos implicados en la formacion de las mineralizaciones de F-Ba de Asturias (N de Espana). Estas mineralizaciones se presentan como capas, mantos y filones encajados en materiales Permotriasicos y Paleozoicos. La mineralogia esta constituida por fluorita, barita, calcita, cuarzo y sulfuros y los yacimientos encuadran en la tipologia Mississippi Valley (MVT) asociados con eventos hidrotermales de rifting en relacion con la apertura del Oceano Atlantico. Los valores de 3He/4He (. 0,1 Ra) obtenidos en los fluidos de Asturias indican un origen cortical y se excluye cualquier implicacion mantelica. Estos resultados son consistentes con el modelo convencional de formacion de yacimientos de fluorita tipo MVT a partir de la circulacion de fluidos de cuenca altamente salinos, con la ausencia de actividad ignea en la zona contemporanea con la mineralizacion, y con datos de isotopos de He en otros yacimientos similares en Europa.

Bibliographic References

  • Ballentine, C.J. & Burnard, P.G. (2002). Production, release and transport of noble gases in the continental crust. Reviews in Mineralogy and Geochemistry, 47: 481-538. doi:10.2138/rmg.2002.47.12
  • Bau, M.; Romer, R.L. & Lüders, V. (2003). Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and S-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England. Mineralium Deposita, 38: 992-1008. doi:10.1007/s00126-003-0376-x
  • Cann, J.R. & Banks, D.A. (2001). Constraints on the genesis of the mineralization of the Alston Block, Northern Pennine Orefield, northern England. Proceedings of the Yorkshire Geology Society, 53: 187-196. doi:10.1144/pygs.53.3.187
  • Cardellach, E.; Corbella, M.; Sánchez, V.; Vindel, E. & Boyce, A.J. (2007). Origins of fluids associated to gangue minerals in fluorite deposits of Asturias (N Spain). Proceedings of the Ninth Biennial SGA Meeting, Dublin 2007. In: Digging Deeper (Andrew et al., eds.), Irish Association for Economic Geology, Dublin, 2: 1311-1314.
  • García Iglesias, J. & Loredo, J. (1994). Geological, geochemical and mineralogical characteristics of the Asturias fluorspar district. Exploration and Mining Geology, 3: 31-37.
  • Farley, K.A. & Neroda, E. (1998). Noble gases in the Earth’s mantle. Annual Review of Earth and Planetary Science, 26: 189-218. doi:10.1146/annurev.earth.26.1.189
  • Kendrick, M.A.; Burgess, R.; Pattrick, R.A.D. & Turner, G. (2001). Noble gas and halogen evidence on the origin of Cu-porphyry mineralising fluids. Geochimica et Cosmochimica Acta, 65: 2651-2668. doi:10.1016/S0016-7037(01)00618-4
  • Kendrick, M.A.; Burgess, R.; Pattrick, R.A.D. & Turner, G. (2002a). Hydrothermal fluid origins in a fluoriterich Mississippi Valley-type District: Combined gases noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine ore field, United Kingdom. Economic Geology, 97: 435-451. doi:10.2113/97.3.435
  • Kendrick, M.A.; Burgess, R.; Leach, D. & Pattrick, R.A.D. (2002b). Hydrothermal fluid origins in Mississippi Velley-Type Ore Districts: Combined gases noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky fluorspar district, Viburnum Trend and Tri-State districts, Midcontinent United States. Economic Geology, 97: 453-469. doi:10.2113/97.3.453
  • Mamyrin, B.A. & Tolstikhin, I. (1984). Helium isotopes in nature. Elsevier. Amsterdam, 267 pp.
  • Mamyrin, B.A.; Anufriyev, G.S.; Kamenskiy, I.L. & Tolstikhin, L.N. (1970). Determination of the composition of atmospheric helium. Geochemistry International, 7: 498-505.
  • Marty, B.; Jambon, A. & Sano, Y. (1989). Helium isotopes and CO2 in volcanic gases of Japan. Chemical Geology, 79: 25-40. doi:10.1016/0009-2541(89)90125-3
  • Muñoz, M.; Premo, W.R. & Courjault-Radé, P. (2005). Sm-Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Mineralium Deposita, 39: 970-975. doi:10.1007/s00126-004-0453-9
  • O’Nions, R.K. & Oxburgh, E.R. (1983). Heat and Helium in the Earth. Nature, 306: 429-431. doi:10.1038/306429a0
  • Pfaff, K.; Romer, R.L. & Markl, G. (2009). U-Pb ages of ferberite, chalcedony, agate, U-mica and pitchblende: constraints on the mineralization history of the Schwarzwald ore district. European Journal of Mineralogy, 21, 817-836. doi:10.1127/0935-1221/2009/0021-1944
  • Piqué, A.; Canals, A.; Grandia, F. & Banks, D.A. (2008). Mesozoic fluorite veins in NE Spain record regional base metal-rich circulation through basin and basement during extensional events. Chemical Geology, 257: 139-152. doi:10.1016/j.chemgeo.2008.08.028
  • Sánchez, V.; Corbella, M.; Fuenlabrada, J.M.; Vindel, E. & Martín-Crespo, T. (2006). Sr and Nd isotope data from the flourspar district of Asturias, Northern Spain. Journal of Geochemical Exploration, 89: 348-350. doi:10.1016/j.gexplo.2005.11.058
  • Sánchez, V.; Vindel V, Martín-Crespo, T.; Corbella, M.; Cardellach, E. & Banks, D.A. (2009). Sources and composition of fluids associated with fluorite deposits of Asturias (N Spain). Geofluids, 9: 338-355. doi:10.1111/j.1468-8123.2009.00259.x
  • Simmons, S.F.; Sawkins, F.J. & Schlutter, D.J. (1987). Mantle derived helium in two Peruvian hydrothermal ore deposits. Nature, 329: 429-432. doi:10.1038/329429a0 PMid:2886914
  • Sizaret, S.; Marcoux, E.; Jebrak, M. & Touray, J.C. (2004). The Rosignol fluorite vein, Chaillac, France: multiphase hydrothermal activity and intra-vein sedimentation. Economic Geology, 99: 1107-1122. doi:10.2113/99.6.1107
  • Stuart, F.M. & Turner, G. (1992). The abundance and isotopic composition of the noble gases in ancient fluids. Chemical Geology, 101: 97-109.
  • Stuart, F.M.; Turner, G.; Duckworth, R.C. & Fallick, A.E. (1994). Helium isotopes as tracers of trapped hydrothermal fluids in ocean-floor sulfides. Geology, 22: 823-826. doi:10.1130/0091-7613(1994)022<0823:HIATOT>2.3.CO;2
  • Stuart, F.M.; Ellam, R.M.; Harrop, P.J.; Godfrey, F. & Bell, B.R. (2000). Constraints on mantle plumes from the helium isotopic composition of basalts from the British Tertiary Igneous Province. Earth and Planetary Sciences Letters, 177: 273-285. doi:10.1016/S0012-821X(00)00050-9
  • Valverde, P. (1993). Permo-Carboniferous magmatic activity in the Cantabrian Zone (NE Iberian Massif, NW Spain). M.Sc Thesis, Boston College, 291 pp.