Papel del tejido adiposo blanco en las complicaciones vasculares asociadas a la obesidad

  1. Gómez Hernández, Almudena 123
  2. Perdomo, Liliana 123
  3. Escribano, Oscar 123
  4. Benito de las Heras, Manuel 123
  1. 1 CIBER de Diabetes y Enfermedades Metabólicas Relacionadas
  2. 2 Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid
  3. 3 Instituto de Investigación Sanitaria del Hospital Clínico San Carlos de Madrid (IdISSC)
Revista:
Clínica e investigación en arteriosclerosis

ISSN: 0214-9168 1578-1879

Año de publicación: 2013

Volumen: 25

Número: 1

Páginas: 27-35

Tipo: Artículo

DOI: 10.1016/J.ARTERI.2012.11.003 PMID: 23522279 SCOPUS: 2-s2.0-84873992103 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Clínica e investigación en arteriosclerosis

Resumen

En esta revisión se valora la contribución del tejido adiposo blanco en las complicaciones vasculares asociadas a la obesidad. El tejido adiposo blanco es un órgano metabólicamente activo y secretor de distintas moléculas que tienen una acción endocrina, paracrina y autocrina. El aumento de peso producido en la obesidad genera un exceso de grasa, generalmente visceral, responsable de la puesta en marcha de vías de señalización que activan la producción de citoquinas y quimioquinas proinflamatorias. Tanto los adipocitos como los macrófagos y linfocitos infiltrados y las células endoteliales contribuyen a la situación crónica inflamatoria de bajo grado presente en la obesidad. Además, el aumento de adiposidad no solo activa la respuesta inflamatoria en el propio adipocito, sino también en el hepatocito. Finalmente, los mediadores proinflamatorios y proaterogénicos que son producidos por el tejido adiposo blanco y el hígado y asociados a las células inmunes generan una inflamación sistémica que produce resistencia a la insulina en tejidos periféricos, además de contribuir al inicio del proceso aterogénico.

Referencias bibliográficas

  • Ahima R.S., Flier J.S. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000, 11:327-332.
  • Aldhahi W., Hamdy O. Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep 2003, 3:293-298.
  • Arita Y., Kihara S., Ouchi N., Takahashi M., Maeda K., Miyagawa J., et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999, 257:79-83.
  • Arner P. Hunting for human obesity genes? Look in the adipose tissue!. Int J Obes Relat Metab Disord 2000, 24(Suppl 4):S57-S62.
  • Arner P., Eckel R.H. Adipose tissue as storage organ. Handbook of Obesity 1998, C379-C395. Marcel Dekker, Inc., New York. G.A. Bray, C. Bouchard, W.P.T. James (Eds.).
  • Baker R.G., Hayden M.S., Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab 2011, 13:11-22.
  • Bays H., Mandarino L., DeFronzo R.A. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 2004, 89:463-478.
  • Bessesen D.H., Robertson A.D., Eckel R.H. Weight reduction increases adipose but decreases cardiac LPL in reduced-obese Zucker rats. Am J Physiol Endocrinol Metab 1991, 261(2 Pt 1):E246-E251.
  • Bjorntorp P. Metabolic implications of body fat distribution. Diabetes Care 1991, 14:1132-1143.
  • Blake G.J., Ridker P.M. Inflammatory bio-markers and cardiovascular risk prediction. J Intern Med 2002, 252:283-294.
  • Boucher J., Castan-Laurell I., le Lay S., Grujic D., Sibrac D., Krief S., et al. Human alpha 2α-adrenergic receptor gene expressed in transgenic mouse adipose tissue under the control of its regulatory elements. J Mol Endocrinol 2002, 29:251-264.
  • Caballero B. The global epidemic of obesity: an overview. Epidemiol Rev 2007, 29:1-5.
  • Cai D., Yuan M., Frantz D.F., Melendez P.A., Hansen L., Lee J., et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005, 11:183-190.
  • Cascio G., Schiera G., di Liegro I. Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases. Curr Diabetes Rev 2012, 8:2-17.
  • Chawla A., Nguyen K.D., Goh Y.P. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 2011, 11:738-749.
  • Coon P.J., Rogus E.M., Drinkwater D., Muller D.C., Goldberg A.P. Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age. J Clin Endocrinol Metab 1992, 75:1125-1132.
  • Crandall D.L., Hausman G.J., Kral J.G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 1997, 4:211-232.
  • Duncan E.R., Walker S.J., Ezzat V.A., Wheatcroft S.B., Li J.M., Shah A.M., et al. Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species. Am J Physiol Endocrinol Metab 2007, 293:E1311-E1319.
  • Eckel R.H., Yost T.J. Weight reduction increases adipose tissue lipoprotein lipase responsiveness in obese women. J Clin Invest 1987, 80:992-997.
  • Fain J.N., Madan A.K., Hiler M.L., Cheema P., Bahouth S.W. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004, 145:2273-2282.
  • Farmer S.R. Transcriptional control of adipocyte formation. Cell Metab 2006, 4:263-273.
  • Febbraio M., Hajjar D.P., Silverstein R.L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest 2001, 108:785-791.
  • Febbraio M., Podrez E.A., Smith J.D., Hajjar D.P., Hazen S.L., Hoff H.F., et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000, 105:1049-1056.
  • Fox C.S., Massaro J.M., Hoffmann U., Pou K.M., Maurovich Horvat P., Liu C.Y., et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 2007, 116:39-48.
  • Frühbeck G., Gómez-Ambrosi J., Muruzábal F.J., Burrell M.A. The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 2001, 280:E827-E847.
  • Gastaldelli A., Miyazaki Y., Pettiti M., Matsuda M., Mahankali S., Santini E., et al. Metabolic effects of visceral fat accumulation in type2 diabetes. J Clin Endocrinol Metab 2002, 87:5098-5103.
  • Gesta S., Tseng Y.H., Kahn C.R. Developmental origin of fat: tracking obesity to its source. Cell 2007, 131:242-256.
  • Gil A., Aguilera C.M., Gil-Campos M., Cañete R. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity. Br J Nutr 2007, 98(Suppl 1):S121-S126.
  • Gómez-Hernández A., Otero Y.F., de las Heras N., Escribano O., Cachofeiro V., Lahera V., et al. Brown fat lipoatrophy and increased visceral adiposity through a concerted adipocytokines overexpression induces vascular insulin resistance and dysfunction. Endocrinology 2012, 153:1242-1255.
  • Hartman A.D. Lipoprotein lipase activities in adipose tissues and muscle in the obese Zucker rat. Am J Physiol Endocrinol Metab 1981, 241:E108-E115.
  • Hellmer J., Marcus C., Sonnenfeld T., Arner P. Mechanisms for differences in lipolysis between human subcutaneous and omental fat cells. J Clin Endocrinol Metab 1992, 75:15-20.
  • Hotamisligil G.S. Inflammation and metabolic disorders. Nature 2006, 444:860-867.
  • Hotamisligil G.S., Arner P., Caro J.F., Atkinson R.L., Spiegelman B.M. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995, 95:2409-2415.
  • Hotamisligil G.S., Budavari A., Murray D., Spiegelman B.M. Reduced tyrosine kinase activity of the insulin receptor in obesity diabetes. Central role of tumor necrosis factor. J Clin Invest 1994, 94:1543-1549.
  • Hotta K., Funahashi T., Arita Y., Takahashi M., Matsuda M., Okamoto Y., et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol 2000, 20:1595-1599.
  • Hube F., Birgel M., Lee Y.M., Hauner H. Expression pattern of tumour necrosis factor receptors in subcutaneous and omental human adipose tissue: role of obesity and noninsulin-dependent diabetes mellitus. Eur J Clin Invest 1999, 29:672-678.
  • Johnson P.R., Zucker L.M., Cruce J.A., Hirsch J. Cellularity of adipose depots in the genetically obese Zucker rat. J Lipid Res 1971, 12:706-714.
  • Jones B.H., Standridge M.K., Moustaid N. AngiotensinII increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology 1997, 138:1512-1519.
  • Kazumi T., Kawaguchi A., Sakai K., Hirano T., Yoshino G. Young men with high-normal blood pressure have lower serum adiponectin, smaller LDL size, and higher elevated heart rate than those with optimal blood pressure. Diabetes Care 2002, 25:971-976.
  • Kershaw E.E., Flier J.S. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004, 89:2548-2556.
  • Krotkiewski M., Björntorp P., Sjöström L., Smith U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J Clin Invest 1983, 72:1150-1162.
  • Kubota N., Terauchi Y., Yamauchi T., Kubota T., Moroi M., Matsui J., et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 2002, 277:25863-25866.
  • Kumada M., Kihara S., Sumitsuji S., Kawamoto T., Matsumoto S., Ouchi N., et al. Coronary artery disease. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003, 23:85-89. Osaka CAD Study Group.
  • Langin D., Dicker A., Tavernier G., Hoffstedt J., Mairal A., Rydén M., et al. Adipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005, 54:3190-3197.
  • Liang C.P., Han S., Okamoto H., Carnemolla R., Tabas I., Accili D., et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 2004, 113:764-773.
  • Llorente-Cebrián S., Kulyté A., Hedén P., Näslund E., Arner P., Rydén M. Relationship between site-specific HSL phosphorylation and adipocyte lipolysis in obese women. Obes Facts 2011, 4:365-371.
  • Lyon C.J., Law R.E., Hsueh W.A. Minireview: adiposity, inflammation, and atherogenesis. Endocrinology 2003, 144:2195-2200.
  • Marin P., Andersson B., Ottosson M., Olbe L., Chowdhury B., Kvist H., et al. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism 1992, 41:1242-1248.
  • Martí A., Berraondo B., Martínez J.A. Leptin: physiological actions. J Physiol Biochem 1999, 55:43-49.
  • Mathieu P., Lemieux I., Després J.P. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 2010, 87:407-416.
  • Mattson M.P. Perspective: Does brown fat protect against diseases of aging?. Ageing Res Rev 2010, 9:69-76.
  • Mcgill J.B., Schneider D.J., Arfken C.L., Lucore C.L. Factors responsible for impaired fibrinolysis in obese subject and NIDDM patients. Diabetes 1994, 43:104-109.
  • Montague C.T., Prins J.B., Sanders L., Digby J.E., O'Rahilly S. Depot and sex specific differences in human leptin mRNA expression: implications for the control of regional fat distribution. Diabetes 1997, 46:342-347.
  • Mueller W.M., Gregoire F.M., Stanhope K.L., Mobbs C.V., Mizuno T.M., Warden C.H., et al. Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology 1998, 139:551-558.
  • Nakata M., Yada T., Soejima N., Maruyama I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes 1999, 48:426-429.
  • Nishimura S., Manabe I., Nagasaki M., Eto K., Yamashita H., Ohsugi M., et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009, 15:914-920.
  • Ouchi N., Kihara S., Arita Y., Nishida M., Matsuyama A., Okamoto Y., et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001, 103:1057-1063.
  • Palomer X., Pérez A., Blanco-Vaca F. Adiponectin: a new link between obesity, insulin resistance and cardiovascular disease. Med Clin (Barc) 2005, 124:388-395.
  • Patel L., Buckels A.C., Kinghorn I.J., Murdock P.R., Holbrook J.D., Plumpton C., et al. Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun 2003, 300:472-476.
  • Pischon T., Girman C.J., Hotamisligil G.S., Rifai N., Hu F.B., Rimm E.B. Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 2004, 291:1730-1737.
  • Pollare T., Vessby B., Lithell H. Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Arterioscler Thromb 1991, 11:1192-1203.
  • Racanelli V., Rehermann B. The liver as an immunological organ. Hepatology 2006, 43(2 Suppl 1):S54-S62.
  • Rosen E.D., Spiegelman B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444:847-853.
  • Ruan H., Lodish H.F. Insulin resistance in adipose tissue: direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev 2003, 14:447-455.
  • Ryo M., Nakamura T., Kihara S., Kumada M., Shibazaki S., Takahashi M., et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J 2004, 68:975-981.
  • Sadur C.N., Yost T.J., Eckel R.H. Insulin responsiveness of adipose tissue lipoprotein lipase is delayed but preserved in obesity. J Clin Endocrinol Metab 1984, 59:1176-1182.
  • Schwartz R.S., Brunzell J.D. Increase of adipose tissue lipoprotein lipase activity with weight loss. J Clin Invest 1981, 67:1425-1430.
  • Sengenès C., Miranville A., Lolmède K., Curat C.A., Bouloumié A. The role of endothelial cells in inflamed adipose tissue. J Intern Med 2007, 262:415-421.
  • Shimomura I., Funahashi T., Takahashi M., Maeda K., Kotani K., Nakamura T., et al. Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat Med 1996, 2:800-803.
  • Shoelson S.E., Lee J., Goldfine A.B. Inflammation and insulin resistance. J Clin Invest 2006, 116:1793-1801.
  • Snijder M.B., Dekker J.M., Visser M., Bouter L.M., Stehouwer C.D., Kostense P.J., et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type2 diabetes: the Hoorn Study. Am J Clin Nutr 2003, 77:1192-1197.
  • Steppan C.M., Bailey S.T., Bhat S., Brown E.J., Banerjee R.R., Wright C.M., et al. The hormone resistin links obesity to diabetes. Nature 2001, 409:307-312.
  • Takano M., Nishihara R., Sugano N., Matsumoto K., Yamada Y., Takane M., et al. The effect of systemic anti-tumor necrosis factor-alpha treatment on Porphyromonas gingivalis infection in type 2 diabetic mice. Arch Oral Biol 2010, 55:379-384.
  • Terrettaz J., Cusin I., Etienne J., Jeanrenaud B. In vivo regulation of adipose tissue lipoprotein lipase in normal rats made hyperinsulinemic and in hyperinsulinemic genetically-obese (fa/fa) rats. Int J Obes Relat Metab Disord 1994, 18:9-15.
  • Uysal K.T., Wiesbrock S.M., Marino M.W., Hotamisligil G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997, 389:610-614.
  • Valet P., Grujic D., Wade J., Ito M., Zingaretti M.C., Soloveva V., et al. Expression of human alpha 2-adrenergic receptors in adipose tissue of beta 3-adrenergic receptor-deficient mice promotes diet-induced obesity. J Biol Chem 2000, 275:34797-34802.
  • Van Harmelen V., Ariapart P., Hoffstedt J., Lundkvist I., Bringman S., Arner P. Increased adipose angiotensinogen gene expression in human obesity. Obes Res 2000, 8:337-341.
  • Wajchenberg B.L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 2000, 21:697-738.
  • Wang H., Eckel R.H. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab 2009, 297:E271-E288.
  • Weisberg S.P., McCann D., Desai M., Rosenbaum M., Leibel R.L., Ferrante A.W. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003, 112:1796-1808.
  • Wellhoener P., Fruehwald-Schultes B., Kern W., Dantz D., Kerner W., Born J., et al. Glucose metabolism rather than insulin is a main determinant of leptin secretion in humans. J Clin Endocrinol Metab 2000, 85:1267-1271.
  • Wronska A., Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxf) 2012, 205:194-208.
  • Xu H., Barnes G.T., Yang Q., Tan G., Yang D., Chou C.J., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003, 112:1821-1830.