Aluminum-silicon coatings on austenitic stainless steel (AISI 304 and 317) deposited by chemical vapor deposition in a fluidized bed

  1. Marulanda Arevalo, José Luddey
  2. Pérez Trujillo, Francisco Javier
  3. Castañeda, Saúl Isaac
Aldizkaria:
Ingeniería e Investigación

ISSN: 0120-5609

Argitalpen urtea: 2014

Alea: 34

Zenbakia: 2

Orrialdeak: 5-10

Mota: Artikulua

DOI: 10.15446/ING.INVESTIG.V34N2.41249 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Beste argitalpen batzuk: Ingeniería e Investigación

Laburpena

Aluminum-silicon coatings were deposited onto stainless steels AISI 304 and AISI 317. The deposition was performed at 540°C with a ratio of active gases HCl/H2 of 1/15.3; argon was used as a carrier gas. The bed of the FBR-CVD process consisted of 2.5 g aluminum powder, 7.5 g silicon powder and 90 g alumina. After the coatings were deposited, each sample was given a heat treatment to improve its mechanical properties and oxidation behavior by diffusing the alloying elements. Thermodynamic simulation was performed with Thermo-Calc software to investigate the composition of the deposited material. The coated and uncoated specimens were exposed to temperatures of 750ºC in an atmosphere where the vapor was transported to the samples using a flow of N2 of 40 ml/min and 100% water vapor (H2O). The coated specimens gained little weight during the thousand hours of exposure and will thus guard against a corrosive attack compared to the uncoated substrates. In addition, the coated stainless steels show an oxidation rate with a logarithmic trend while the uncoated steel oxidation rate showed a linear trend.

Erreferentzia bibliografikoak

  • Abella, J. M. (2003). Láminas delgadas y recubrimientos. Preparación, propiedades y aplicaciones. Spain: Consejo superior de investigaciones científicas CSIC.
  • Anastassiou, A., Christoglou, C., & Angelopoulos, G. N. (2010). Formation of aluminide coatings on Ni and austenitic 316 stainless steel by a low temperature FBCVD process. Surface & Coatings Technology, 204, 2240-2245.
  • Brossard, J. M., Hierro, M. P., Sánchez, L., Bolívar, F. J., & Pérez, F. J. (2006). Thermodynamical analysis of Al and Si halide gaseous precursors in CVD. Review and approximation for deposition at moderate temperature in FBR-CVD process. Surface & Coatings Technology, 201, 2475-2483.
  • Chaliampalias, D., Vourlias, G., Pistofidis, N., Pavlidou, E., Stergiou, A., & Stergioudis, G. (2007). Deposition of zinc coatings with fluidized bed technique. Materials Letters, 61, 223-226.
  • Choy, K. L. (2003). Chemical vapour deposition of coatings. Progress in Materials Science, 48, 48-57.
  • Christoglou, Ch., Voudouris, N., & Angelopoulos, G. N. (2002). Formation and modelling of aluminide coatings on iron by a fluidized bed CVD process. Surface and Coatings Technology, 155, 51-58.
  • Christoglou, Ch., Voudouris, N., Angelopoulos, G. N., Pant, M., & Dahl, W. (2004). Deposition of aluminium on magnesium by a CVD process. Surface and Coatings Technology, 184, 149-155.
  • Golman, B., & Shinohara, K. (1999). Comparison of moving bed reactors for chemical vapor deposition coating of fine particles. Advance powder Technology, 10, 65-76.
  • Hao-Tung, L., Sheng-Chang, W., Jow-Lay, H., & Shin-Yun, C. (2007). Processing of hot pressed Al2O3-Cr2O3/Cr-carbide nanocomposite prepared by MOCVD in fluidized bed. Journal of the European Ceramic Society, 27, 4759-4765.
  • Huttunen, S. E., Kalidakis, S., Stott, F. H., Perez, F. J., & Lepistö, T. (2009). High-temperature erosion-oxidation of uncoated and FB-CVD aluminized and aluminized-siliconized 9Cr-1 Mo steel under fluidized-bed conditions. Wear, 267, 2223-2234.
  • Kim, J., & Young, G. (2006). Effect of agitation on fluidization characteristics of fine particles in a fluidized bed. Powder Technology, 166, 113-122.
  • Kobayashi, S., & Yakou, T. (2002). Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Materials science and engineering: A, 338, 44-53.
  • Kuo-Liang, W., Fan-Shiong, C., & Goa-Shee, L. (2003). The aluminizing and Al/Si codeposition on AISI HP alloy and the evaluation of their carburizing resistance. Materials Science and Engineering: A, 357, 27-38.
  • Maitra, T., & Gupta, S. P. (2002). Intermetallic compound formation in Fe-Al-Si ternary system: Part II. Materials Characterization, 49, 293-311.
  • Pérez, F. J., Hierro, M. P., Trilleros, J. A., Carpintero, M. C., Sanchez, L., & Bolivar, F. J. (2006). Aluminum and aluminum/silicon coatings on ferritic steels by CVD-FBR technology. Materials Chemistry and Physics, 97, 50-58.
  • Pérez, F. J., Hierro, M. P., Trilleros, J. A., Carpintero, M. C., Sanchez, L., Brossard, J. M., & Bolivar, F. J. (2006). Iron aluminide coatings on ferritic steels by CVD-FBR technology. Intermetallics, 14, 811-817.
  • Pérez, F. J., Pedraza, F., Hierro, M. P., & Hou, P. Y. (2000). Adhesion properties of aluminide coatings deposited via CVD in fluidised bed reactors CVD-FBR on AISI 304 stainless steel. Surface and Coatings Technology, 133, 338-343.
  • Sanchez, L., Bolivar, F. J., Hierro, M. P., & Perez, F. J. (2008). Iron aluminide coatings on ferritic steels by CVD-FBR modified process with Hf. Intermetallics, 16, 1161-1166.
  • Thermocalc Software AB. Version P (2003). Stockholm, Sweden: Fundation of Computational Thermodynamics.
  • Tsipas, D., Anthimides, K., & Flitris, Y. (2003). Deposition of hard and/or corrosion resistant, single and multielement coatings on ferrous and nonferrous alloys in a fluidized bed reactor. Journal of materials processing technology, 134, 145-152.
  • Zhan, Z., He, Y., Wang, D., & Gao, W. (2006). Low-temperature processing of Fe-Al intermetallic coatings assisted by ball milling. Intermetallics, 14, 75-81.