Learning and coordinating in a multilayer network

  1. Lugo, Haydeé
  2. San Miguel Ruibal, Maximino
Revista:
Documentos de Trabajo (ICAE)

ISSN: 2341-2356

Año de publicación: 2014

Número: 30

Páginas: 1-16

Tipo: Documento de Trabajo

Otras publicaciones en: Documentos de Trabajo (ICAE)

Resumen

We introduce a two layer network model for social coordination incorporating two relevant ingredients: a) different networks of interaction to learn and to obtain a pay-off, and b) decision making processes based both on social and strategic motivations. Two populations of agents are distributed in two layers with intralayer learning processes and playing interlayer a coordination game. We find that the skepticism about the wisdom of crowd and the local connectivity are the driving forces to accomplish full coordination of the two populations, while polarized coordinated layers are only possible for all-to-all interactions. Local interactions also allow for full coordination in the socially efficient Pareto-dominant strategy in spite of being the riskier one.

Referencias bibliográficas

  • Cabrales, A., Uriarte, J.R. Doubts and Equilibria. J Evol Econ 23, 783-810 (2013).
  • Centola, D., Eguíluz, V. M., Macy, M.W. Cascade Dynamics of Complex Propagation. Physica A 374, 449-456 (2007).
  • Delios, A., Henisz, W.J. Political hazards, experience, and sequential entry strategies: the international expassion of Japanese firms 1980-1998. Int Manage J 24:1153-1164 (2003).
  • Ellison, G. Learning, local interaction, and coordination. Econometrica 61, 1047- 1071 (1993).
  • Gonzlez-Avella, J.C., Eguíluz, V.M., Marsili, M., Vega-Redondo, F., San Miguel, M. Threshold learning dynamics in social networks. PLoS ONE 6(5), e20207 (2011).
  • Gracia-Lzaro, C., Ferrera, A., Ruiz, G., Tarancón, A., Cuesta, J.A., Moreno, Y., Sánchez, A. Heterogeneous networks do not promote cooperation when humans play a Prisoner´s Dilemma, PNAS (USA) 109, 12922-12926 (2012)
  • Granovetter, M. Threshold Models of Collective Behavior. J. Am. Soc. 83, 1420- 1443 (1978).
  • Gruji´c, J., Fosco, C., Araujo, L., Cuesta, J.A., Sánchez A. Social experiments in the mesoscale: Humans playing a spatial Prisoner’s Dilemma PLoS ONE 5(11), e13749 (2010).
  • Gruji´c, J., Gracia-Lázaro, C., Traulsen, A., Milinski, M., Semmann, D., Cuesta J.A., Moreno, Y., Sánchez A. A meta-analysis of spatial Prisoner’s Dilemma experiments: Conditional cooperation and payoff irrelevance Sci.Rep. 4, 4615 (2014).
  • Holley, R., Liggett, T.M. Ergodic theorems for weakly interacting infinite systems and the Voter Model. Ann. Probab. 3, 643-663 (1975).
  • Jiang, L.-L., Perc, M. Spreading of cooperative behaviour across interdependent groups. Sci. Rep. 3, 2483 (2013).
  • Kandori, M., Mailath, G., Rob, R. Learning, mutation, and long-run equilibria in games. Econometrica 61, 29-56. (1993).
  • Kivelü, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A. Multilayer Networks arXiv:1309.7233 J. Complex Netw. 2(3): 203-271 (2014).
  • Levitt, B., March, J.G. Organizational learning. Ann Rev Socio 14: 319-340 (1988).
  • Luthi, L., Pestelacci, E., Tomassini, M. Cooperation and community structure in social networks. Physica A 387, 955-966 (2008).
  • Nowak, M.A.,May, R.M. Evolutionary games and spatial chaos. Nature 359, 826-829. (1992).
  • Ramsey FP Truth and probability in Ramsey, 1931. In Braithwaite RB (ed) The foundation of mathematics and other logical essays, Chapter VII. Kegan, Paul, trench & Co., London; Harcourt, Brace and Company, New York, 156-198. (1926).
  • Roca, C.P., Cuesta, J.A., S´anchez, A. Evolutionary Game theory: temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 6, 208-249 (2009).
  • Schlag, K. Why imitate, and if so, how? A boundedlly rational approach to multiarmed bandits. J Econ Theory 78:130-156 (1998).
  • Scott, J. Social Network Analysis. SAGE Publications, 2012.
  • Skyrms, B. The Stag Hunt and the Evolution of Social Structure; Cambridge University Press: Cambridge, UK, 2004.
  • Suchecki, K., Eguíluz, V. M., San Miguel, M. Voter model dynamics in complex networks: Role of dimensionality. Phys. Rev. E 72, 036132(1-8) (2005).
  • Szolnoki, A., Perc, M. Information sharing promotes prosocial behaviour. New J. Phys. 15, 053010 (2013).
  • Tomassini, M., Pestelacci, E. Coordination Games on Dynamical Networks. Games 1, 242-261 (2010).
  • Vega-Redondo, F. Economics and the Theory of Games; Cambridge University Press: Cambridge, UK, 2003.
  • Vilone, D., Ramasco, J.J., Sánchez, A., San Miguel, M. Social and strategic imitation: the way to consensus. Sci. Rep. 2, 686; DOI: 10.1038/srep00686 (2012).
  • Vilone, D., Ramasco, J.J., Sánchez, A., San Miguel, M. Social imitation vs strategic choice, or consensus vs cooperation in the networked Prisoners Dilemma Physical Review E 90, 022810 (2014).
  • Wang Z., Wang L, Perc M. Degree mixing in multilayer networks impedes the evolution of cooperation. Phys. Rev. E 89, 052813 (2014).
  • Wang, Z., Szolnoki, A., Perc, M. Interdependent network reciprocity in evolutionary games. Sci. Rep. 3, 1183 (2013).
  • Wang, Z., Szolnoki, A., Perc, M. Optimal interdependence between networks for the evolution of cooperation. Sci. Rep. 3, 2470 (2013).
  • Wasserman, S., Faust, K. Social Network Analysis: Methods and Applications. Cambridge University Press, 1994.
  • Zhang, P., Peeta, S., Friesz, T. Dynamic Game Theoretic Model of Multi-Layer Infrastructure Networks. Netw Spat Econ 5, 147-178 (2005).