Perfil de la frecuencia cardiaca en triatletas altamente entrenados

  1. Augusto G. Zapico
  2. P.J. Benito
  3. Víctor Diaz
  4. Jonatan Ruíz Ruíz
Revista:
Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

ISSN: 1577-0354

Año de publicación: 2014

Volumen: 14

Número: 56

Páginas: 619-632

Tipo: Artículo

Otras publicaciones en: Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte

Resumen

Nueve triatletas hombres (68,0 ± 2,0 mL·kg-1·min-1, 25 ± 1,9 años, 68,3 ± 2,2 kg y 1,77 ± 0,22 m), realizaron un test incremental en cicloergómetro en tres ocasiones correspondientes con el inicio de la temporada, periodo precompetitivo y periodo competitivo. El consumo de oxígeno máximo y los umbrales ventilatorios (aeróbico y anaeróbico respectivamente) fueron medidos en cada visita. A pesar de los cambios en la distribución del entrenamiento entre disciplinas, tiempo total de entrenamiento, tiempo de entrenamiento por semana, e intensidad del entrenamiento, potencia máxima, consumo de oxígeno máximo, frecuencia cardiaca submáxima, y concentración de lactato permanecieron estables a lo largo de la temporada. Dada la estabilidad mostrada con la relación entre la frecuencia cardiaca y los umbrales ventilatorios en nuestra muestra, concluimos que un único test de laboratorio al comienzo de la temporada podría ser suficiente para prescribir intensidades de entrenamiento (al menos en ciclismo) basándose en zonas de frecuencia cardiaca en triatletas altamente entrenados. Estos resultados deberán ser comprobados además con muestras mayores para poder ser generalizados.

Referencias bibliográficas

  • Amann, M., Subudhi, A. W., Walker, J., Eisenman, P., Shultz, B., y Foster, C. (2004). An evaluation of the predictive validity and reliability of ventilatory threshold. Med Sci Sports Exerc, 36, 1716-1722.
  • Banister, E. W., y Calvert, T. W. (1980). Planning for future performance: implications for long term training. Can J Appl Sport Sci, 5, 170-176.
  • Basset, F. A., y Boulay, M. R. (2000). Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. Eur J Appl Physiol, 81, 214-221.
  • Basset, F. A., y Boulay, M. R. (2003). Treadmill and cycle ergometer tests are interchangeable to monitor triathletes annual training. J Sports Sci Med, 2, 110-116.
  • Beaver, W. L., Wasserman, K., y Whipp, B. J. (1986). A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol, 60, 2020-2027.
  • Bentley, D. J., Millet, G. P., Vleck, V. E., y McNaughton, L. R. (2002). Specific aspects of contemporary triathlon: implications for physiological analysis and performance. Sports Med, 32, 345-359.
  • Bernard, T., Vercruyssen, F., Grego, F., Hausswirth, C., Lepers, R., Vallier, J. M. y col. (2003). Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes. Br J Sports Med, 37, 154-158; discussion 159.
  • Billat, V., Lepretre, P. M., Heugas, A. M., Laurence, M. H., Salim, D., y Koralsztein, J. P. (2003). Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc, 35, 297-304; discussion 305-296.
  • Calderon, F. J., Díaz, V., Peinado, A. B., Benito, P. J., y Maffulli, N. (2010). Cardiac dimensions over 5 years in highly trained long-distance runners and sprinters. Phys Sportsmed, 38, 112-118.
  • Carter, J., y Jeukendrup, A. E. (2002). Validity and reliability of three commercially available breath-by-breath respiratory systems. Eur J Appl Physiol, 86, 435-441.
  • Coyle, E. F., Coggan, A. R., Hopper, M. K., y Walters, T. J. (1988). Determinants of endurance in well-trained cyclists. J Appl Physiol, 64, 2622- 2630.
  • Coyle, E. F., Feltner, M. E., Kautz, S. A., Hamilton, M. T., Montain, S. J., Baylor, A. M. y col. (1991). Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc, 23, 93-107.
  • Davis, J. A., Whipp, B. J., y Wasserman, K. (1980). The relation of ventilation to metabolic rate during moderate exercise in man. Eur J Appl Physiol Occup Physiol, 44, 97-108.
  • Díaz, V., Peinado, A. B., Vleck, V. E., Alvarez-Sánchez, M., Benito, P. J., Alves, F. B. y col. (2011). Longitudinal changes in response to a cycle-run field test of young male National "Talent identification" and Senior Elite Triathlon Squads. J Strength Cond Res. In press.
  • Dickhuth, H. H., Yin, L., Niess, A., Rocker, K., Mayer, F., Heitkamp, H. C. y col. (1999). Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int J Sports Med, 20, 122-127.
  • Foss, O., y Hallen, J. (2005). Validity and stability of a computerized metabolic system with mixing chamber. Int J Sports Med, 26, 569-575.
  • Foster, C., Fitzgerald, D. J., y Spatz, P. (1999). Stability of the blood lactate-heart rate relationship in competitive athletes. Med Sci Sports Exerc, 31, 578-582.
  • Galy, O., Manetta, J., Coste, O., Maimoun, L., Chamari, K., y Hue, O. (2003). Maximal oxygen uptake and power of lower limbs during a competitive season in triathletes. Scand J Med Sci Sports, 13, 185-193.
  • Greenhouse, S. W., y Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95-112.
  • Hawley, J. A., y Noakes, T. D. (1992). Peak power output predicts maximal oxygen uptake and performance time in trained cyclists. Eur J Appl Physiol Occup Physiol, 65, 79-83.
  • Heyward, V. H., y Stolarczyk, L. (1996). Applied body composition assesment (1ª ed.). Champain (Il): Human Kinetics.
  • Hue, O., Le Gallais, D., Boussana, A., Chollet, D., y Prefaut, C. (2000). Performance level and cardiopulmonary responses during a cycle-run trial. Int J Sports Med, 21, 250-255.
  • Hue, O., Le Gallais, D., Chollet, D., y Prefaut, C. (2000). Ventilatory threshold and maximal oxygen uptake in present triathletes. Can J Appl Physiol, 25, 102-113.
  • Kohrt, W. M., Morgan, D. W., Bates, B., y Skinner, J. S. (1987). Physiological responses of triathletes to maximal swimming, cycling, and running. Med Sci Sports Exerc, 19, 51-55.
  • Kohrt, W. M., O'Connor, J. S., y Skinner, J. S. (1989). Longitudinal assessment of responses by triathletes to swimming, cycling, and running. Med Sci Sports Exerc, 21, 569-575.
  • Londeree, B. R. (1997). Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc, 29, 837-843.
  • Lucia, A., Hoyos, J., Perez, M., y Chicharro, J. L. (2000). Heart rate and performance parameters in elite cyclists: a longitudinal study. Med Sci Sports Exerc, 32, 1777-1782.
  • Maffulli, N., Capasso, G., y Lancia, A. (1991). Anaerobic threshold and performance in middle and long distance running. J Sports Med Phys Fitness, 31, 332-338.
  • Marfell-Jones, M., Olds, T., Stewart, A., y Carter, L. (2006). International standards for anthropometric assessment. . Potchefstroom, South Africa: I.S.A.K.
  • Mauchly, J. W. (1940). Significance test for sphericity of a normal nvariate distribution. Annals of Mathematical Statistics, 11, 204-209.
  • Meyer, T., Lucia, A., Earnest, C. P., y Kindermann, W. (2005). A conceptual framework for performance diagnosis and training prescription from submaximal gas exchange parameters--theory and application. Int J Sports Med, 26 Suppl 1, S38-48.
  • Millet, G. P., Dreano, P., y Bentley, D. J. (2003). Physiological characteristics of elite short- and long-distance triathletes. Eur J Appl Physiol, 88, 427-430.
  • Millet, G. P., Millet, G. Y., y Candau, R. B. (2001). Duration and seriousness of running mechanics alterations after maximal cycling in triathletes. Influence of the performance level. J Sports Med Phys Fitness, 41, 147-153.
  • Millet, G. P., y Vleck, V. E. (2000). Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations for training. Br J Sports Med, 34, 384-390.
  • Millet, G. P., Vleck, V. E., y Bentley, D. J. (2009). Physiological differences between cycling and running: lessons from triathletes. Sports Med, 39, 179-206.
  • Millet, G. P., Vleck, V. E., y Bentley, D. J. (2011). Physiological requirements in triathlon. J Hum Sport Exerc, 6, 184-204.
  • O´Toole, L. M., y Douglas, S. P. (1995). Applied Physiology of Triathlon. Sports Med, 19, 251-267.
  • Rabadán, M., Díaz, V., Calderón, F. J., Benito, P. J., Peinado, A. B., y Maffulli, N. (2011). Physiological determinants of speciality of elite middle- and long-distance runners. J Sports Sci, 29, 975-982.
  • Rowlands, D. S., y Downey, B. (2000). Physiology of Triathlon. In J. William E. Garret, y Donald T. Kirkendall (Ed.), Exercise and Sport Science (pp.919-939). Philadelphia: Lippincott and Wilkins.
  • Schneider, D. A., Lacroix, K. A., Atkinson, G. R., Troped, P. J., y Pollack, J. (1990). Ventilatory threshold and maximal oxygen uptake during cycling and running in triathletes. Med Sci Sports Exerc, 22, 257-264.
  • Seiler, K. S., y Kjerland, G. O. (2006). Quantifying training intensity distribution in elite endurance athletes: is there evidence for an "optimal" distribution? Scand J Med Sci Sports, 16, 49-56.
  • Skinner, J. S., y McLellan, T. H. (1980). The transition from aerobic to anaerobic metabolism. Res Q Exerc Sport, 51, 234-248.
  • Vleck, V., Santos, S., Bentley, D., y Alves, F. (2005). Influence of prior cycling on the OBLA measured during incremental running in triathletes. Paper presented at the Annual Congress of the British Association of Sports and Exercise Scientists.
  • Wasserman, K., Whipp, B. J., Koyl, S. N., y Beaver, W. L. (1973). Anaerobic threshold and respiratory gas exchange during exercise. J Appl Physiol, 35, 236-243.
  • Weston, S. B., y Gabbett, T. J. (2001). Reproducibility of ventilation of thresholds in trained cyclists during ramp cycle exercise. J Sci Med Sport, 4, 357-366.
  • Zapico, A. G., Calderon, F. J., Benito, P. J., Gonzalez, C. B., Parisi, A., Pigozzi, F. y col. (2007). Evolution of physiological and haematological parameters with training load in elite male road cyclists: a longitudinal study. J Sports Med Phys Fitness, 47, 191-196.