Evolución post-lahárica de un canal proglaciargarganta de Huiloac (México)

  1. Nuria Andrés de Pablo
  2. José Juan Zamorano Orozco
  3. José Juan de Sanjosé Blasco
  4. Luis Miguel Tanarro García
  5. David Palacios Estremera
Revista:
Boletín de la Sociedad Geológica Mexicana

ISSN: 1405-3322

Año de publicación: 2014

Tomo: 66

Número: 2

Páginas: 305-328

Tipo: Artículo

DOI: 10.18268/BSGM2014V66N2A7 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Boletín de la Sociedad Geológica Mexicana

Resumen

En el último periodo eruptivo del volcán Popocatépetl (19º 02' N, 98º 37' W, 5424 m) se produjeron varios lahares sin-eruptivos que modificaron la red fluvial de su ladera nororiental, donde se localiza el curso del río Huiloac. Los lahares responsables de los cambios morfológicos más importantes fueron los ocurridos en 1997 y 2001. Aunque desde entonces se han producido algunos eventos explosivos, como las recientes erupciones de mayo y junio de 2013, en la garganta de Huiloac no se ha vuelto a registrar ningún lahar relacionado con la actividad volcánica. El presente artículo propone una metodología para detectar y cuantificar los cambios morfológicos, así como determinar la dinámica de procesos erosivos y sedimentarios en un tramo de la garganta de Huiloac, tras el paso del lahar sin-eruptivo de 2001, durante un primer periodo de siete años. Este método combina la interpretación de una serie temporal de mapas geomorfológicos y de perfiles topográficos transversales del canal, con ayuda de herramientas de CAD (Computer-aided design) y de SIG (Sistemas de Información Geográfica). El análisis de la evolución geomorfológica y topográfica se cruza finalmente con la información meteorológica disponible sobre precipitaciones. Los resultados obtenidos muestran que la fase inicial (hasta octubre de 2002) estuvo caracterizada por la incisión y evacuación del material que colmató el cauce durante el lahar de 2001. Posteriormente, la acción geomorfológica de las aguas corrientes y la dinámica de laderas ensancharon y profundizaron el canal, aunque también se produjo sedimentación, como lo atestiguan bancos y terrazas fluvio-laháricos. La frecuencia y capacidad de los lahares secundarios, alimentados por las precipitaciones y el agua del deshielo glaciar, fueron los factores que determinaron el dominio de procesos erosivos o de sedimentación en Huiloac. De esta manera, se ha observado que en épocas menos lluviosas y con precipitaciones regulares, el canal experimentó menos variaciones morfológicas y las cantidades erosionadas son también menores, como en el periodo 2004 ‒ 2006. En cambio, las precipitaciones excepcionales en la estación seca (enero de 2002 y enero de 2004) y los aguaceros continuados al final de la estación húmeda (septiembre y octubre de 2007) activaron los procesos de erosión por incisión y por zapa lateral, lo cual produjo el vaciado de los depósitos laháricos que tapizan el canal. Una vez concluido el primer periodo de observación, se concluye que el cauce no ha alcanzado su estabilidad, ya que sus laderas fueron muy inestables debido a la fuerte pendiente que presentaron, a pesar del considerable vaciado de depósitos que ha experimentado en este lapso temporal.

Referencias bibliográficas

  • Ackerman, C.T., Evans, T.A., Brunner, G.W.. (2000). Hydrologic and hydraulic modeling support with Geographic Information System. ESRI press. Redlands^eCalifornia California. 155-176
  • Andrés, N.. (2009). Técnicas de información geográfica aplicadas al estudio del origen de los lahares y su experimentación en estratovolcanes tropicales. 476
  • Andrés, N., Zamorano, J.J., Sanjosé, J.J., Atkinson, A., Palacios, D.. (2007). Glacier retreat during the recent eruptive period of Popocatépetl volcano, Mexico. Annals of Glaciology. 45. 73-82
  • Barclay, J., Alexander, J., Sušnik, J.. (2007). Rainfall-induced lahars in the Belham Valley, Montserrat, West Indies. Journal of the Geological Society. 164. 815-827
  • Beaman, J.H.. (1962). The timberlines of Iztaccíhuatl and Popocatépetl, México. Ecology. 43. 377-385
  • Capra, L., Poblete, M.A., Alvarado, R.. (2004). The 1997 and 2001 lahars of Popocatépetl volcano (Central Mexico): textural and sedimentological constrains on their origin and hazards. Journal of Volcanology and Geothermal Research. 131. 351-369
  • Capra, L., Borselli, L., Varley, N., Gavilanes-Ruiz, J.C., Norini, G., Sarocchi, D., Caballero, L., Cortes, A.. (2010). Rainfall-triggered lahars at Volcán de Colima, Mexico: surface hydro-repellency as initiation process. Journal of Volcanology and Geothermal Research. 189. 105-117
  • (2001). Resumen de la actividad del volcán Popocatépetl de diciembre de 1994 a mayo de 2001.
  • (2013). Monitoreo volcánico, reportes diarios de la actividad volcánica desde agosto de 1997.
  • Chen, J., He, Y.P., Wei, F.Q.. (2005). Debris flow erosion and deposition in Jiangjia Gully, Yunnan, China. Environmental Geology. 48. 771-777
  • Chinen, T., Kadomura, H.. (1986). Post-eruption sediment budget of a small catchment on Mt. Usu, Hokkaido. Zeitschrift für Geomorphologie N.F. Supplementband. 60. 217-232
  • Chow, V.T.. (1959). Open-channel hydraulics. McGraw-Hill Book Company. New York. 680
  • Cronin, S.J., Neall, V.E., Lecointre, J.A., Palmer, A.S.. (1999). Dynamic interactions between lahars and stream flow: A case study from Ruapehu volcano, New Zealand. GSA Bulletin. 111. 28-38
  • Cruz-Reyna, S., Quezada, J.L., Peña, C., Zepeda, O., Sánchez, T.. (1995). Volcán Popocatépetl: Estudios Realizados Durante la Crisis de 1994-1995. Secretaría de Gobernación, Sistema Nacional de Protección Civil, Centro Nacional de Prevención de Desastres (CENAPRED)Universidad Nacional Autónoma de México. México^eD.F. D.F.. 3-22
  • Daag, A.S.. (1994). Geomorphic developments and erosion of the Mount Pinatubo 1991 pyroclastic flows in the Sacobia watershed, Philippines: A study using remote sensing and Geographic Information Systems (GIS). 106
  • Daag, A.S.. (2003). Modelling the Erosion of Pyroclastic Flow Deposits and the Occurrences of Lahars at Mt. Pinatubo, Philippines. 238
  • Daag, A., van Westen, C.J.. (1996). Cartographic modelling of erosion in pyroclastic flow deposits of Mount Pinatubo, Philippines. ITC Journal. 110-124
  • Doerr, S.H., Shakesby, R.A., Walsh, R.P.D.. (2000). Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Review. 51. 33-65
  • García-Romero, A.. (1998). Análisis integrado de paisajes en el occidente de la cuenca de México (la vertiente oriental de la Sierra de las Cruces, Monte Alto y Monte Bajo). 600
  • Garcin, M., Poisson, B., Pouget, R.. (2005). High rates of geomorphological processes in a tropical area: the Remparts River case study (Réunion Island, Indian Ocean). Geomorphology. 67. 335-350
  • González, A.E.. (2000). Estudios de detalle estratigráfico y sedimentológico del Lahar de San Nicolás en el flanco noreste del volcán Popocatépetl. 109
  • González, A.E., Delgado, H., Urrutia, J.. (1997). Abstracts of International Association of Volcanology and Chemistry of the Earth's Interior, General Assembly. Gobierno de Jalisco, Secretaría General, Unidad Editorial. Puerto Vallarta^eJalisco Jalisco. 94
  • Gran, K., Montgomery, D.. (2005). Spatial and temporal patterns in fluvial recovery following volcanic eruptions: Channel response to basin-wide sediment loading at Mount Pinatubo, Philippines. Geological Society of America Bulletin. 117. 195-211
  • Haddad, B., Pastor, M., Palacios, D., Muñoz-Salinas, E.. (2011). A SPH Depth Integrated Model for Popocatépetl 2001 Lahar (Mexico): Sensitivity Analysis and Runout Simulation. Engineering Geology.
  • Hamidi, S.. (1989). Lahar of Galunggung Volcano from 1982 through 1986. Proceedings of International Symposium on Erosion and Volcanic Debris Flow Technology. Yogyakarta.
  • Hayes, S.K., Montgomery, D.R., Newhall, C.G.. Fluvial sediment transport and deposition following the 1991 eruption of Mt. Pinatubo. Geomorphology. 45. 211-224
  • Hirao, K., Yoshida, M.. (1989). Sediment yield of Mt Galunggung after eruption in 1982. Proceedings of International Symposium on Erosion and Volcanic Debris Flow Technology. Yogyakarta.
  • Hodgson, K., Manville, V.. (1999). Sedimentology and flow behavior of a rain-triggered lahar, Mangatoetoenui Stream, Ruapehu volcano, New Zealand. Geological Society of America Bulletin. 111. 743-754
  • Inbar, M., Lugo Hubp, J., Villers Ruiz, L.. (1994). The geomorphological evolution of the Paricutin cone and lava flows, Mexico, 1943- 1990. Geomorphology. 9. 57-76
  • Inbar, M., Enriquez, A. R., Granel, J. H. (2001). Morphological changes and erosion processes following 1982 eruption of El Chichón volcano, Chiapas, México. Geomophologie. 3. 175-184
  • (1978). Cartografías digitales de las hojas Amecameca de Juárez E14-B41 y Huejotzingo E14-B42, escala 1:50,000.
  • Principales resultados del Censo de Población y Vivienda 2010. Puebla.
  • Principales resultados del Censo de Población y Vivienda 2010. Distrito Federal, México.
  • Iwamoto, M.. (1996). Geomorphic hazards. John Wiley and Sons. Chichester. 95-110
  • Janda, R.J., Scott, K.M., Martinson, H.A.. (1981). Lahar movement, effects, and deposits. The 1980 eruptions of Mount St Helens, Washington. 461-478
  • Janda, R.J., Meyer, D.F., Childers, D.. (1984). Sedimentation and geomorphic changes during and following the 1980-1983 eruptions of Mount St. Helens, Washington. Shin-Sabo. 37. 10-21
  • Kadomura, H., Imagawa, T., Yamamoto, H.. (1983). Eruption-induced rapid erosion and mass movements on Usu Volcano, Hokkaido. Zeitschrift für Geomorphologie N.F. Supplementband. 46. 123-142
  • Lauer, W., Stiehl, E.. (1973). La clasificación del clima en la región de Puebla-Tlaxcala. Comunicaciones. 31-36
  • Lavigne, F.. (1998). Les lahars du volcan Merapi, Java central, Indonésie: déclenchement, budget sédimentaire, dynamique et zonage des risques associés. 539
  • Lavigne, F., Thouret, J.C.. (2002). Sediment transportation and deposition by rain-triggered Lahar at Merapi Volcano, Central Java, Indonesia. Geomorphology. 49. 45-69
  • Leavesley, G.H., Lusby, G.C., Lichty, R.W.. (1989). Infiltration and erosion characteristics of selected tephra deposits from the 1980 eruption of Mount St. Helens, Washington, USA. Hydrological Sciences Journal. 34. 339-353
  • Long, W.S.. (2000). Hydrologic and hydraulic modeling support with Geographic Information System. ESRI Press. Redlands^eCalifornia California. 145-154
  • Macías, J.L.. (2005). Geología e historia eruptiva de algunos de los grandes volcanes activos de México. Boletín de la Sociedad Geológica Mexicana. LVII. 379-424
  • Major, J.J.. (2003). Post-eruption hydrology and sediment transport in volcanic river systems. Water Resources Impact. 5. 11-15
  • Major, J.J.. (2004). Posteruption suspended sediment transport at Mount St. Helens: Decadal-scale relationships with landscape adjustments and river discharges. Journal of Geophysical Research: Earth Surface. 109.
  • Major, J.J., Janda, R.J., Daag, A.S.. Fire and mud: Eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of VolcanologySeismology and University of Washington Press. Quezon CitySeattle. 895-919
  • Major, J.J., Pierson, T.C., Dinehart, R.L., Costa, J.E.. (2000). Sediment yield following severe volcanic disturbance- A two-decade perspective from Mount St. Helens. Geology. 28. 819-822
  • Manville, V., Newton, E.H., White, J.D.L.. Fluvial responses to volcanism: resedimentation of the 1800a Taupo ignimbrite eruption in the Rangitaiki River catchment, North Island, New Zealand. Geomorphology. 65. 49-70
  • Meyer, D.F., Martinson, H.A.. (1989). Rates and Processes of Channel Development and Recovery Following the 1980 Eruption of Mount St. Helens, Washington. Hydrological Sciences Journal. 34. 115-127
  • Mizuyama, T., Kobashi, S.. (1996). Erosion and Sediment Yield: Global and Regional Perspectives. International Association of Hydrological Sciences. 295-301
  • Muñoz-Salinas, E.. (2007). Los lahares del Popocatépetl: obtención y tratamiento de la información para la prevención de riesgos. 229
  • Muñoz-Salinas, E., Manea, V.C., Palacios, D., Castillo-Rodríguez, M.. (2007). Estimation of lahar flow velocity on Popocatépetl volcano (Mexico). Geomorphology. 92. 91-99
  • Muñoz-Salinas, E., Castillo-Rodríguez, M., Manea, V., Manea, M., Palacios, D.. (2009). Lahar flow simulations using LAHARZ program: Application for the Popocatépetl volcano, Mexico. Journal of Volcanology and Geothermal Research. 182. 13-22
  • Newhall, C.G., Punongbayan, R.S.. (1996). Fire and mud: Eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of VolcanologySeismology and University of Washington Press. Quezon CitySeattle. 1126
  • North American Drought Monitor (NADM): North American Drought Monitor Maps.
  • Palacios, D.. (1995). Rockslide processes at the North Slope of Popocatepetl Volcano. Permafrost and Periglacial Processes. 6. 345-359
  • Palacios, D.. (1996). Recent Geomorphologic evolution of a glaciovolcanic active stratovolcano: Popocatepetl (Mexico). Geomorphology. 16. 319-335
  • Palacios, D., Zamorano, J.J., Parrilla, G.. (1998). Proglacial debris flows in Popocatépetl north face and their relation to 1995 eruption. Zeitschrift Geomorphologie. 42. 273-295
  • Pierson, T.C.. (1985). Initiation and flow behaviour of the 1980 Pine Creek and Muddy River lahars, Mount St. Helens, Washington. Geological Society of American Bulletin. 96. 1056-1069
  • Pierson, T.C., Scott, K.M.. (1985). Downstream Dilution of a lahar: Transition from debris flow to hyperconcentrated streamflow. Water Resources Research. 21. 1511-1524
  • Pierson, T.C., Costa, K.M.. (1987). A rheologic classification of subaerial sediment-water flows. Reviews in Engineering GeologyDebris flows/Avalanches: Process, recognition, and mitigation. Geological Society of America. Boulder^eColorado Colorado. 8. 1-12
  • Pierson, T.C., Janda, R.J., Umbal, J.V., Daag, A.S.. (1992). Immediate and long-term hazards from lahars and excess sedimentation in rivers draining Mt. Pinatubo, Philippines. VancouverWashington. 35
  • Pierson, T.C., Daag, A.S., Reyes, P.J., Regalado, M.T.M., Solidum, R.U., Tubianosa, B.S.. (1996). Fire and Mud, Eruptions and Lahars of Mt. Pinatubo, Philippines. Philippine Institute of VolcanologySeismology and University of Washington Press. Quezon CitySeattle. 921-950
  • Renschler, C.S.. (2005). Scales and uncertainties in using models and GIS for volcano hazard prediction. Journal of Volcanology and Geothermal Research. 139. 73-87
  • Rodolfo, K.S.. (1989). Origin and Early Evolution of Lahar Channel at Mabinit, Mayon Volcano, Philippines. Geological Society of America Bulletin. 101. 414-426
  • Rodolfo, K.S., Arguden, A.T.. (1991). Rain-lahar generation and sediment-delivery systems at Mayon Volcano, Philippines. SEPM Special PublicationSedimentation in Volcanic Settings. 45. 71-87
  • Rodolfo, K.S., Arguden, A.T., Solidum, R.U., Umbal, J.V.. (1989). Anatomy and behaviour of a post-eruptive rain lahar triggered by a typhoon on Mayon Volcano, Philippines. Bulletin of the International Association of Engineering Geology. 40. 55-66
  • Scott, K.M., Janda, R.J., Cruz, E.G., Gabinete, Eto, I., Isada, M., Sexton, M., Hadley, K.. (1996). Fire and mud: Eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and SeismologyUniversity of Washington Press. Quezon CitySeattle. 971-988
  • Scott, K. M., Vallance, J.W., Kerle, N., Macías, J.L., Strauch, W., Devoli, G.. (2005). Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surface Processes and Landforms. 30. 59-79
  • Segerstrom, K.. (1950). Erosion studies at Paricutín, State of Michoacán, Mexico. 1-64
  • Sheridan, M.F., Hubbard, B., Bursik, M.I., Abrams, M., Siebe, C., Macías, J.L., Delgado, H.. (2001). Gauging short-term volcanic hazards at Popocatépetl. EOS, Transactions American Geophysical Union. 82. 187-188
  • Shimokawa, E., Taniguchi, Y.. (1983). Proceedings of the Symposium on erosion control in volcanic areas. Sabo Division, Erosion Control Department. 155-181
  • Shimokawa, E., Jitousono, T., Yazawa, A., Kawagoe, R.. (1989). An effect of tephra cover on erosion processes of hillslopes in and around Sakurajima Volcano (resumen). Proceedings of International Symposium on Erosion and Volcanic Debris Flow Technology. Yogyakarta.
  • Siebe, C., Abrams, M., Macías, J.L., Obenholzner, J.. (1996). Repeated volcanic disasters in Prehispanic time at Popocatépetl, central Mexico: Past key to the future?. Geology. 24. 399-402
  • Simon, A.. (1999). Channel and Drainage-Basin Response of the Toutle River System in the Aftermath of the 1980 Eruption of Mount St. Helens, Washington. Channel and drainage-basin response of the Toutle River system in the aftermath of the 1980 eruption of Mount St. Helens, Washington. U.S. Dept. of the Interior, U.S. Geological Survey. 1-130
  • Smith, G.A., Fritz, W.J.. (1989). Volcanic Influences on Terrestrial Sedimentation. Geology. 17. 375-376
  • Smith, G.A., Lowe, D.R.. (1991). Lahars: Volcano-Hydrologic Events and Deposition in the Debris Flow-Hyperconcentrated Flow Continuum: Sedimentation in Volcanic Settings. SEPM Special Publication. 45. 59-69
  • Tanarro, L.M., Andrés, N., Zamorano, J.J., Palacios, D., Renschler, C.S.. (2010). Geomorphological evolution of a fluvial channel after primary lahar deposition: Huiloac Gorge, Popocatépetl volcano (Mexico). Geomorphology. 122. 178-190
  • Thouret, J.C., Lavigne, F.. (2000). Volcaniclastic rocks from magmas to sediments. Gordon and Breach Science Publishers. Amsterdam. 151-174
  • Tuñgol, N.M.. (2002). Lahar initiation and sediment yield in the Pasig-Potrero River basin, Mount Pinatubo, Philippines. 172
  • Tuñgol, N.M., Regalado, T.S.. (1997). Fire and mud: Eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of VolcanologySeismology and University of Washington Press. Quezon CitySeattle. 1023-1032
  • Umbal, J.V.. (1997). Five years of lahars at Pinatubo volcano: Declining but still potentially lethal hazards. Journal of the Geological Society of the Philippines. 52. 1-19
  • Vallance, J. W.. (2000). Encyclopedia of Volcanoes. Academia Press. San Diego^eCalifornia California. 601-616
  • van Westen, C.J.. (1997). Modelling erosion from pyroclastic flow deposits on Mount Pinatubo. ILWIS Applications Guide. Enschede. 53-72
  • van Westen, C.J., Daag, A.. (2005). Analysing the relation between rainfall characteristics and lahar activity at Mount Pinatubo, Philippines. Earth Surface Processes and Landforms. 30. 1663-1674
  • Waldron, H.H.. (1967). Debris flow and erosion control problems caused by the ash eruptions of Irazu Volcano, Costa Rica. .S. Geological Survey Bulletin. 1241. 1-37
  • Yamamoto, H.. (1984). Erosion of the 1977-1978 tephra layers on a slope of Usu Volcano, Hokkaido. EOS, Transactions American Geophysical Union. 5. 111-124