Nuevos lentes solares con certificado de seguridad retinianaanálisis de la función visual mediante la valoración de agudeza visual y estereoscópica, discriminación del color y sensibilidad al contraste

  1. Bonnin Arias, Cristina
  2. Aguirre Vilacoro, Victoria
  3. Chamorro Gutiérrez, Eva
  4. Sánchez-Ramos, Celia
Revista:
Ciencia y Tecnología para la Salud Visual y Ocular

ISSN: 1692-8415 2389-8801

Año de publicación: 2015

Volumen: 13

Número: 1

Páginas: 123-136

Tipo: Artículo

DOI: 10.19052/SV.3043 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Ciencia y Tecnología para la Salud Visual y Ocular

Resumen

Objetivo: comparar el efecto sobre la función visual de los nuevos lentes solares con certificado de seguridad retiniana (CSR) y los lentes solares tradicionales. Material y métodos: fueron valoradas 36 personas (44 ± 14 años) de forma binocular y con la compensación óptica habitual. La diferencia fundamental entre los nuevos lentes CSR y los lentes solares tradicionales estriba en la absorbancia selectiva de las longitudes de onda corta. Los aspectos de la función visual evaluados fueron la agudeza visual logMAR (AV), la estereoagudeza (EA), la percepción del color y la función de sensibilidad al contraste (FSC). Resultados: los valores de AV logMAR y de EA con el filtro solar CSR son similares a los obtenidos sin filtro; sin embargo, con el filtro solar tradicional, ambas variables disminuyen significativamente. La discriminación del color disminuye con ambos filtros, pérdida que es muy superior con el filtro tradicional (45 %) en comparación con el filtro CSR (5 %). El filtro tradicional produce una drástica disminución de la FSC para todas las frecuencias espaciales en comparación con el nuevo filtro CSR. Conclusiones: en la actualidad resulta imprescindible proteger el sistema visual mediante filtros ópticos solares; por ello, se ha diseñado y desarrollado un nuevo filtro óptico que, manteniendo la protección solar, mejora la visibilidad y el confort, a la vez que optimiza la AV, la EA y la FSC y mantiene la percepción del color.

Referencias bibliográficas

  • Referencias Asamblea Médica Mundial (1964). Declaración de Helsinki de la AMM. Principios éticos para las investigaciones médicas en seres humanos. Recuperado de http://www.wma.net/es/30publications/10policies/b3/
  • Chou, B. R. y Cullen, A. P. (1996). Ocular hazards of industrial spot welding. Optometry & Vision Science, 73(6), 424-427.
  • Cuiña Sardiña, R. y García Feijoó, J. (2003) Los optotipos. Sociedad Española de Oftalmología, 2(2), 35-42.
  • Duncan, J. et al. (2002). Macular pigment and lutein supplementation in choroideremia. Exp. Eye Res., 74(3), 371-381.
  • Grimm, C. et al. (2000a). Blue light’s effects on rhodopsin: photoreversal of bleaching in living rat eyes. Invest. Ophthalmol. Vis. Sci., 41(12), 3984-3990.
  • Grimm, C. et al. (2000b). Gene expression in the mouse retina: the effect of damaging light. Molecular Vision, 6, 252-260.
  • Grimm, C., Wenzel, A., Williams, T., Rol, P., Hafezi, F. y Remé, C. (2001). Rhodopsin-mediated blue-light damage to the rat retina: effect of photoreversal of bleaching. Invest. Ophthalmol. Vis. Sci., 42(2), 497-505.
  • Haughom, B. y Strand, T. E. (2011). Sine wave mesopic contrast sensitivity: defining the normal range in a young population. Acta Ophthalmol., 91(2), 176-182. Doi: 10.1111/j.1755-3768.2011.02323.x
  • Hiesch, A. y Berrot, A. (2011). Unilateral photic maculopathy caused by welder’s flash. J. Fr. Ophtalmol., 34(1), 37.e1-3. Doi: 10.1016/j.jfo.2010.09.013
  • Imberger, A. y Altmann, A. (1999). Unintentional adult eye injuries in Victoria Monash University. Hazard, 41, 4-5.
  • Lawwill, T. (1973). Effects of prolonged exposure of rabbit retina to low-intensity light. Invest. Ophthalmol., 12(1), 45-51.
  • Margrain, T., Boulton, M., Marshall, J. y Sliney, D. (2004). Do blue light filters confer protection against agerelated macular degeneration? Prog. Retin. Eye. Res., 23(5), 523-531.
  • Marshall, J. (1985). Radiation and the ageing eye. Ophthalmic. Physiol. Opt., 5(3), 241-263.
  • Martínez, F. M. y Pons Moreno, A. M. (2004). Fundamentos de la visión binocular. Alicante: Universidad de Alicante.
  • Noell, W. y Albrecht, R. (1971). Irreversible effects on visible light on the retina: role of vitamin A. Science, 172(978), 76-79.
  • Noell, W. y Walker, V. (1966). Retinal damage by light in rats. Invest. Ophthalmol., 5(5), 450-473.
  • Okuno, T. (2002). Evaluation of blue-light hazards from various light sources. Dev. Ophthalmol., 35, 104-12.
  • Okuno, T., Ojima, J. y Saito, H. (2001). Ultraviolet radiation emitted by CO(2) arc welding. Ann. Occup. Hyg., 45(7), 597-601.
  • Organisciak, D. y Vaughan, D. (2010) Retinal light damage: mechanisms and protection. Prog. Retin. Eye Res., 29(2), 113-134.
  • Organisciak, D., Darrow, R., Barsalou, L., Kutty, R. y Wiggert, B. (2003). Susceptibility to retinal light damage in transgenic rats with rhodopsin mutations. Invest.
  • Ophthalmol. Vis. Sci., 44(2), 486-92. O’Steen, W. (1979). Hormonal and light effects in retinal photodamage. Photochem. Photobiol., 29(4), 745-753.
  • O’Steen, W., Bare, D., Tytell, M., Morris, M. y Gower, D. (1990). Water deprivation protects photoreceptors against light damage. Brain Res., 534(1-2), 99-105.
  • O’Steen, W. y Donnelly, J. (1982a). Antagonistic effects of adrenalectomy and ether/surgical stress on lightinduced photoreceptor damage. Invest. Ophthalmol. Vis. Sci., 22(1), 1-7.
  • O’Steen, W. y Donnelly, J. (1982b). Chronologic analysis of variations in retinal damage in two strains of rats after short-term illumination. Invest. Ophthalmol. Vis. Sci., 22(2), 252-255.
  • O’Steen, W., Spencer, R., Bare, D. y McEwen, B. (1995). Analysis of severe photoreceptor loss and Morris water-maze performance in aged rats. Behav. Brain Res., 68(2), 151-158.
  • O’Steen, W., Sweatt, A., Eldridge, J. Sánchez,C., Ramos, A. y Brodish, A. (1987). Gender and chronic stress effects on the neural retina of young and mid-aged Fischer-344 rats. Neurobiol. Aging, 8(5), 449-455.
  • Owsley, C. y Sloane, M. E. (1987). Contrast sensitivity, acuity, and the perception of “real-world” targets. Br. J. Ophthalmol., 71(10), 791-796.
  • Puell, M. C., Palomo, C., Sánchez-Ramos, C. y Villena, C. (2004). Mesopic contrast sensitivity in the presence or abscence of glare in a large driver population. Graefe’s Arch. Clin. Exp. Ophthalmol., 242, 755-761.
  • Puell, M. C., Palomo, C., Sánchez-Ramos, C. y Villena, C. (2004). Normal values for photopic and mesopic letter contrast sensitivity. J. Refract. Surg., 20, 484-488.
  • Rassow, B. (1999). Effect of luminance on contrast sensitivity and glare in the mesopic range. Klin. Monatsbl. Augenheilkd., 214, 401–406.
  • Remé, C. (2005). The dark side of light: rhodopsin and the silent death of vision the proctor lecture. Invest. Ophthalmol. Vis. Sci., 46(8), 2671-2682.
  • Roehlecke, C., Schumann, U., Ader, M., Knels, L. y Funk, R. H. (2011). Influence of blue light on photoreceptors in a live retinal explant system. Mol. Vis., 17, 876-884.
  • Schneider, S. y Guerry, R. K. (2006). Light toxicity in the posterior segment. En Duane’s clinical ophthalmology. Filadelfia: Lippincott, Williams & Wilkins.
  • Shah, N., Dakin, S. C., Redmond, T. y Anderson, R. S. (2011). Vanishing Optotype acuity: repeatability and effect of the number of alternatives. Ophthalmic. Physiol. Opt., 31, 17-22.
  • Tso, M. y Woodford, B. (1983). Effect of photic injury on the retinal tissues. Ophthalmology, 90(8), 952-63.
  • Tso, M, Wallow, I. H. y Powell, J. O. (1973). Differential susceptibility of rod and cone cells to argon laser. Arch. Ophthalmol., 89(3), 228-234.
  • Vila-Coro et al. (2013). Influencia de las gafas protectoras en la visibilidad del campo de trabajo de soldadores. Gaceta Optometría, Optica y Oftálmica, Nov.486 (1), 10-14.
  • Vukicevic, M. y Herriot, W. (2008). Phototoxic maculopathy associated with arc welding: clinical findings and associated functional vision impairment. Clin. Experiment Ophthalmol., 36(7), 695-697.
  • Wang, H. M., Hull, B. E. y Organisciak, D. (1994). Long term effects of diaminophenoxypentane in the rat retina: protection against light damage. Curr. Eye Res., 13(9), 655-660.
  • Wenzel, A., Grimm, C., Samardzija, M. y Remé, C. (2005a). Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Prog. Retin. Eye Res., 24(2), 275-306.
  • Wenzel, A. et al. (2005b). The retinal G protein-coupled receptor (RGR) enhances isomerohydrolase activity independent of light. J. Biol. Chem., 280(33), 29874-29884.
  • Woo, J. et al. (2006). Eye injuries in Singapore--don’t risk it. Do more. A prospective study. Ann. Acad. Med. Singapore, 35(10), 706-718.
  • Wu, J., Seregard, S. y Algvere, P. (2006). Photochemical damage of the retina. Surv. Ophthalmol., 51(5), 461-481.