Analizando la diversidad beta en ensambles de líquenes en un gradiente vertical sobre cinco especies de forófitos en la pluvisilva montana de la Gran Piedra, Cuba

  1. Rosabal, Dania 1
  2. Burgaz, Ana Rosa 2
  3. Reyes, Orlando J. 3
  1. 1 Departamento de Biología, Universidad de Oriente, Santiago de Cuba (Cuba)
  2. 2 Departamento de Biología Vegetal I, Facultad de Biología, Universidad Complutense de Madrid, 28040-Madrid (Spain)
  3. 3 Centro Oriental de Ecosistemas y Biodiversidad, Santiago de Cuba (Cuba).
Revista:
Botanica complutensis

ISSN: 0214-4565

Año de publicación: 2016

Número: 40

Páginas: 23-33

Tipo: Artículo

DOI: 10.5209/BOCM.53196 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Botanica complutensis

Objetivos de desarrollo sostenible

Resumen

El trabajo tiene como objetivo caracterizar el componente de la diversidad beta (reemplazo, riqueza de especies o anidamiento) que determina las disimilitudes entre los ensambles de líquenes en un gradiente vertical de altura, desde la base del árbol hasta las ramas superiores, en cinco especies de forófitos en la pluvisilva montana de la Gran Piedra. Las especies de árboles muestreadas fueron Myrcia fenzliana, Coccoloba wrightii, Clusia tetrastigma, Dendropanax arboreus y Brunellia comocladifolia. Las disimilitudes entre los ensambles de líquenes producto del reemplazo de especies, las diferencias en riqueza o anidamiento de especies fueron calculados según las propuestas de Baselga (2010, 2012) y Carvalho et al. (2012). El anidamiento se determinó a través de los coeficientes NODF (Almeida-Neto et al. 2008) y Nestedness (Ulrich 2006). Las disimilitudes entre los ensambles de líquenes se hallan determinadas por el reemplazo de especies. Entre las zonas I y II, la disimilitud entre los ensambles de líquenes se atribuye a las diferencias en riqueza de especies, además se presentó un patrón de anidamiento del ensamble de líquenes de la zona I respecto al de la zona II.

Referencias bibliográficas

  • Almeida-Neto, M.; Guimarães, P.; Guimarães, P. Jr; Loyola, R. & Ulrich, W. 2008. A consistent metric for nestedness analysis in ecological systems: reconciling concept and quantification. Oikos 117(8): 1227-1239.
  • Aptroot, A.; Lücking, R.; Sipman, H.; Umaña, L. & Chávez, J. 2008. Pyrenocarpous lichens with bitunicate asci. Bibl. Lichenol. 97: 1-162.
  • Aptroot, A.; Thor; G.; Lücking, R.; Elix, J. & Chávez, J. 2009. The lichen genus Herpothallon reinstated. Bibl. Lichenol. 99: 19-66.
  • Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19: 134-143.
  • Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecol. Biogeogr. 21: 1223-1232.
  • Brako, L. 1991. Phyllopsora (Bacidiaceae). Flora Neotropica 55: 1-66.
  • Brodo, I. M.; Sharnoff, S. D. & Sharnoff, S. 2001. Lichens of North America. Yale University Press.
  • Carvalho, J.; Cardoso, P. & Gomes, P. 2012. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Global Ecol. Biogeogr. 21: 760-771.
  • Calderón-Patrón, J.; Moreno, C. & Zuria, I. 2012. La diversidad beta: medio siglo de avances. Rev. Mex. Biodivers. 83: 879-891.
  • Colwell, R. & Coddington, J. 1994. Estimating terrestrial biodiversity through extrapolation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 345:101-118.
  • Ecaterina, F. 2015. Analysis of the saxicolous lichen communities in Macin Mountains National Park. Acta Horti Bot. Bucur. 42: 1-20.
  • Galloway, D. 1994. Studies on the lichen genus Sticta (Schreber) Ach.: I. Southern South American species. Lichenologist 26(3): 223-282.
  • Hale, E. Jr. 1976. A monograph of the lichen genus Pseudoparmelia Lynge (Parmeliaceae). Smithson. Contrib. Bot. 31: 1-62.
  • Hale, E. Jr. 1987. A monograph of the lichen genus Parmelia Acharius sensu stricto (Ascomycotina: Parmeliaceae). Smithson. Contrib. Bot.66: 1-55.
  • Jaksic, F. & Marone, L. 2007. Ecología de comunidades. Ediciones Universidad Católica de Chile. Kirk, P. M. 2008. Species Fungorum. http://www.speciesfungorum.org
  • Koleff, P. 2005. Conceptos y medidas de la diversidad beta. En: G. Halffter, J. Soberón, P. Koleff & A.
  • Melic (eds.) Sobre diversidad biológica: el significado de las diversidades alfa, beta y gamma: 19- 40. Monografías Tercer Milenio, 4. CONABIO, DIVERSITAS & S.E.A. Zaragoza.
  • Lennon, J.; Koleff, P.; Greenwood, J. & Gaston, K. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. J. Anim. Ecol. 70: 966-979.
  • Lisewski, V. & Ellis, C. 2011. Lichen epiphyte abundance controlled by the nested effect of Woodland composition along macroclimatic gradients. Fungal Ecol. 4(3): 241-249.
  • Lücking, R. & Rivas, E. 2008. Clave y guía ilustrada para géneros de Graphidaceae. GLALIA 1: 1-41.
  • Lumbsch, T.; Nash, T. H. & Messuti, M. I. 1999. A revision of Pertusaria species with hyaline ascospores in southwestern North America (Pertusariales, Ascomycotina). Bryologist 102(2): 215-239.
  • Mangold, A.; Martín, M. P.; Lücking, R. & Lumbsch, H. T. 2008. Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57: 476-486.
  • Moberg, R. 1990. The lichen genus Physcia in Central and South America. Nord. J. Bot. 10: 319-342.
  • Montenegro, U. 1991. Clima. Atlas de Santiago de Cuba. BIOECO. MEGACEM.
  • Nascimbene, J.; Marini, L.; Nimis, P. L. 2010. Epiphytic lichen diversity in old-growth and managed Picea abies stands in Alpine spruce forests. Forest Ecol. Manag. 260(5): 603-609.
  • Nascimbene, J.; Benesperi, R.; Brunialti, G.; Catalano, I.; Vedove, M. D.; Grillo, M.; Isocrono, D.; Matteucci, E.; Potenza, G.; Puntillo, D.; Puntillo, M.; Ravera, S.; Rizzi, G. & Giordani, P. 2013. Patterns and drivers of ‚ diversity and similarity of Lobaria pulmonaria communities in Italian forests.
  • J. Ecol. 101: 493-505.
  • Nekola, J. C. & White, P. S. 1999. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26: 867-878.
  • Reyes, O.J.; Pelicié, O.; Vinent, C.; Labrada, L. M.; Semanat, E. & Fornaris, E. 2005. Estudio fisionómico y funcional de la pluvisilvasmontanas de la Gran Piedra, Cuba. Foresta Veracruzana, México 7(2): 7-14.
  • Rivas Plata, E.; Lücking, R.; Aptroot, A.; Sipman, H.; Chávez, J.; Umaña, L. & Lizano, D. 2006. A first assessment of the Ticolichen biodiversity inventory in Costa Rica: the genus Coenogonium (Ostropales: Coenogoniaceae), with a world-wide key and checklist and a phenotype-based cladistic analysis. Fungal Divers. 23: 255-321.
  • Rivas Plata, E.; Lücking, R.; Sipman, H.; Mangold, A.; Kalb, K. & Lumbsch, H. T. 2010. A world-wide key to the thelotremoid Graphidaceae, excluding the Ocellularia-Myriotrema-Stegobolus clade. Lichenologist 42: 139-185.
  • Sørensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of vegetation on Danish commons. Biol. Skrif. 5: 1-34.
  • Ulrich, W. 2006. Nestedness - a FORTRAN program for calculating ecological matrix temperatures. www.uni.torun.pl/~ulrichw
  • Ulrich, W. & Gotelli, N. 2012. Pattern detection in null model analysis. Oikos 000: 1-17.
  • Ulrich, W.; Almeida-Neto, M. & Gotelli, N. 2009. A consumer’s guide to nestedness analysis. Oikos 118: 3-17.
  • Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monograph. 30: 279-338.
  • Wirth, M. & Hale, E. Jr. 1978. Morden-Smithsonian Expedition to Dominica: the lichens (Graphidaceae). Smithson. Contrib. Bot. 40: 1-64.
  • Wolseley, P. A. & Aguirre-Hudson, B. 1997. The ecology and distribution of lichens in tropical deciduous and evergreen forests of northern Thailand. J. Biogeogr. 24: 327-343