‘Reliability of new poly (lactic-co-glycolic acid) membranes treated with oxygen plasma plus silicon dioxide layers for pre-prosthetic guided bone regeneration processes’

  1. Gabriel Castillo Dalí 1
  2. Raquel Castillo de Oyagüe 2
  3. Antonio Batista Cruzado 1
  4. Carmen López Santos 3
  5. Agustín Rodríguez González-Elipe 3
  6. Jean Louis Saffar 4
  7. Christopher D. Lynch 5
  8. José Luis Gutiérrez Pérez 1
  9. Daniel Torres Lagares 1
  1. 1 Dr. Biol, PhD. DDS. DMD, PhD. DDS, PhD. Department of Stomatology, Faculty of Dentistry, University of Seville (US), C/ Avicena, s/n, 41009, Seville, Spain
  2. 2 DDS, PhD. Department of Buccofacial Prostheses, Faculty of Dentistry, Complutense University of Madrid (UCM), Pza. Ramón y Cajal, s/n, 28040, Madrid, Spain
  3. 3 Dr. Phys. PhD. DDS. Institute of Materials Science of Seville (CSIC-University of Seville), C/ Américo Vespucio, 49, 41092, Seville, Spain
  4. 4 DDS, PhD Faculté de Chirurgie Dentaire, Université Paris V – Descartes, rue Maurice Arnoux, no. 1, 92120, Montrouge, Paris, Franc
  5. 5 BDS, PhD, MFD, FDS (Rest Dent), FACD, FHEA. School of Dentistry, Cardiff University, CF14 4XY, Cardiff, Wales, U.K
Revista:
Medicina oral, patología oral y cirugía bucal. Ed. inglesa

ISSN: 1698-6946

Año de publicación: 2017

Volumen: 22

Número: 2

Páginas: 15

Tipo: Artículo

DOI: 10.4317/MEDORAL.21512 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Medicina oral, patología oral y cirugía bucal. Ed. inglesa

Resumen

The use of cold plasmas may improve the surface roughness of poly(lactic-co-glycolic) acid (PLGA) membranes, which may stimulate the adhesion of osteogenic mediators and cells, thus accelerating the biodegradation of the barriers. Moreover, the incorporation of metallic-oxide particles to the surface of these membranes may enhance their osteoinductive capacity. Therefore, the aim of this paper was to evaluate the reliability of a new PLGA membrane after being treated with oxygen plasma (PO2) plus silicon dioxide (SiO2) layers for guided bone regeneration (GBR) processes. Circumferential bone defects (diameter: 11 mm; depth: 3 mm) were created on the top of eight experimentation rabbits’ skulls and were randomly covered with: (1) PLGA membranes (control), or (2) PLGA/PO2/SiO2 barriers. The animals were euthanized two months afterwards. A micromorphologic study was then performed using ROI (region of interest) colour analysis. Percentage of new bone formation, length of mineralised bone, concentration of osteoclasts, and intensity of ostheosynthetic activity were assessed and compared with those of the original bone tissue. The Kruskal-Wallis test was applied for between-group com Asignificance level of a=0.05 was considered. The PLGA/PO2/SiO2 membranes achieved the significantly highest new bone formation, length of mineralised bone, concentration of osteoclasts, and ostheosynthetic activity. The percentage of regenerated bone supplied by the new membranes was similar to that of the original bone tissue. Unlike what happened in the control group, PLGA/PO2/SiO2 membranes predominantly showed bone layers in advanced stages of formation. The addition of SiO2 layers to PLGA membranes pre-treated with PO2 improves their bone-regeneration potential. Although further research is necessary to corroborate these conclusions in humans, this could be a promising strategy to rebuild the bone architecture prior to rehabilitate edentulous areas.

Referencias bibliográficas

  • Liu, X, Ma, PX. (2004). Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 32. 477
  • Liu, X, Ma, PX, Ngiam, M, Liao, S, Patil, AJ, Cheng, Z. (2009). The fabrication of nano-hydroxyapatite on PLGA and PLGA/ collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone. 45. 4-16
  • Castillo-Dalí, G, Castillo-Oyagüe, R, Terriza, A, Saffar, JL, Batista, A, Barranco, A. (2014). In vivo comparative model of oxygen plasma and nanocomposite particles on PLGA membranes for guided bone regeneration processes to be applied in pre-prosthetic surgery: a pilot study. J Dent. 42. 1446
  • Hild, N, Schneider, OD, Mohn, D, Luechinger, NA, Koehler, FM, Hofmann, S. (2011). Two-layer membranes of calcium phosphate/collagen/PLGA nanofibres: in vitro biomineralisation and osteogenic differentiation of human mesenchymal stem cells. Nanoscale. 3. 401
  • Park, JY, Jung, IH, Kim, YK, Lim, HC, Lee, JS, Jung, UW. (2015). Guided bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects. Biomater Res. 19. 15
  • Jung, RE, Kokovic, V, Jurisic, M, Yaman, D, Subramani, K, Weber, FE. (2011). Guided bone regeneration with a synthetic biodegradable membrane: a comparative study in dogs. Clin Oral Implants Res. 22. 802
  • Wang, Y, Shi, X, Ren, L, Yao, Y, Zhang, F, Wang, DA. (2010). Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications. J Biomed Mater Res B Appl Biomater. 93. 84-92
  • Jacobs, T, Declercq, H, De Geyter, N, Cornelissen, R, Dubruel, P, Leys, C. (2013). Plasma surface modification of polylactic acid to promote interaction with fibroblasts. J Mater Sci Mater Med. 24. 469
  • Davies, JE. (2003). Understanding peri-implant endosseous healing. J Dent Educ. 67. 932
  • Park, BS, Heo, SJ, Kim, CS, Oh, JE, Kim, JM, Lee, G. (2005). Effects of adhesion molecules on the behavior of osteoblast-like cells and normal human fibroblasts on different titanium surfaces. J Biomed Mater Res A. 74. 640
  • Lim, JY, Dreiss, AD, Zhou, Z, Hansen, JC, Siedlecki, CA, Hengstebeck, RW. (2007). The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials. 28. 1787
  • Gallina, S, Barranco-Piedra, S, Torres-Lagares, D, Baroukh, B, Llorens, A, Gutiérrez-Pérez, JL. (2009). Estrogen withdrawal transiently increased bone turnover without affecting the bone balance along the tooth socket in rats. J Periodontol. 80. 2035
  • Torres-Lagares, D, Tulasne, JF, Pouget, C, Llorens, A, Saffar, JL, Lesclous, P. (2010). Structure and remodelling of the human parietal bone: an age and gender histomorphometric study. J Craniomaxillofac Surg. 38. 325
  • Castillo-Dalí, G, Castillo-Oyagüe, R, Terriza, A, Saffar, JL, Batista-Cruzado, A, Lynch, CD. (2016). Pre-prosthetic use of poly(lactic-co-glycolic acid) membranes treated with oxygen plasma and TiO2 nanocomposite particles for guided bone regeneration processes. J Dent. 47. 71
  • Sun, SJ, Yu, WQ, Zhang, YL, Jiang, XQ, Zhang, FQ. (2013). Effects of TiO2 nanotube layers on RAW 264.7 macrophage behaviour and bone morphogenetic protein-2 expression. Cell Prolif. 46. 685
  • Pedrosa, Jr WF, Okamoto, R, Faria, PE, Arnez, MF, Xavier, SP, Salata, LA. (2009). Immunohistochemical tomographic histological study on onlay bone graft remodeling. Part II: Calvarial bone. Clin Oral Implants Res. 20. 1254
  • Wolf, E, Röser, K, Hahn, M, Welkerling, H, Delling, G. (1992). Enzyme and immunohistochemistry on undecalcified bone and bone marrow biopsies after embedding in plastic: a new embedding method for routine application. Virchows Arch A Pathol Anat Histopathol. 420. 17-24
  • Erben, RG. (1997). Embedding of bone samples in methylmethacrylate: an improved method suitable for bone histomorphometry, histochemistry, and immunohistochemistry. J Histochem Cytochem. 45. 307
  • Wittenburg, G, Volkel, C, Mai, R, Lauer, G. (2009). Immunohistochemical comparison of differentiation markers on paraffin and plastic embedded human bone samples. J Physiol Pharmacol. 608. 43
  • Oyagüe, RC, Sánchez-Turrión, A, López-Lozano, JF, Suárez-García, MJ. (2012). Vertical discrepancy and microleakage of laser-sintered and vacuum-cast implant-supported structures luted with different cement types. J Dent. 40. 123
  • Oktay, EO, Demiralp, B, Demiralp, B, Senel, S, Cevdet Akman, A, Eratalay, K. (2010). Effects of platelet-rich plasma and chitosan combination on bone regeneration in experimental rabbit cranial defects. J Oral Implantol. 36. 175
  • Sohn, JY, Park, JC, Um, YJ, Jung, UW, Kim, CS, Cho, KS. (2010). Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 40. 180
  • Shen, H, Hu, X, Yang, F, Bei, J, Wang, S. (2007). Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly(lactide-co-glycolide). Biomaterials. 28. 4219
  • Silva, NA, Moreira, J, Ribeiro-Samy, S, Gomes, ED, Tam, RY, Shoichet, MS. (2013). Modulation of bone marrow mesenchymal stem cell secretome by ECM-like hydrogels. Biochimie. 95. 2314
  • Fielding, G, Bose, S. (2013). SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9. 9137
  • Eisinger, J, Clairet, D. (1993). Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study. Magnes Res. 6. 247
  • Chhabra, V, Gill, AS, Sikri, P, Bhaskar, N. (2011). Evaluation of the relative efficacy of copolymerized polylactic-polyglycolic acids alone and in conjunction with polyglactin 910 membrane in the treatment of human periodontal infrabony defects: a clinical and radiological study. Indian J Dent Res. 22. 83
  • Vigier, S, Catania, C, Baroukh, B, Saffar, JL, Giraud-Guille, MM, Colombier, ML. (2011). Dense fibrillar collagen matrices sustain osteoblast phenotype in vitro and promote bone formation in rat calvaria defect. Tissue Eng Part A. 17. 889
  • Cavalcanti-Adam, EA, Volberg, T, Micoulet, A, Kessler, H, Geiger, B, Spatz, JP. (2007). Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J. 92. 2964
  • Foley, CH, Kerns, DG, Hallmon, WW, Rivera-Hidalgo, F, Nelson, CJ, Spears, R. (2010). Effect of phosphate treatment of Acid-etched implants on mineral apposition rates near implants in a dog model. Int J Oral Maxillofac Implants. 25. 278