Automática marina: una revisión desde el punto de vista del control

  1. Jesús M. de la Cruz García 1
  2. Joaquín Aranda Almansa 2
  3. José M. Girón Sierra 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2012

Volumen: 9

Número: 3

Páginas: 205-218

Tipo: Artículo

DOI: 10.1016/J.RIAI.2012.05.001 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

La Automática es una disciplina horizontal muchos de cuyos temas se aplican en el campo del sector marítimo, como son: la robótica, la ingeniería de control, la inteligencia artificial, el modelado y la simulación, los sensores y los actuadores. En este trabajo hacemos una revisión de los avances que han tenido lugar en los últimos años desde el punto de vista del modelado, la identificación y el control de los vehículos marinos

Información de financiación

Existen muchos tipos de controladores cuyos diseños se basan bien en modelos lineales o en no lineales, y que utilizan distintas estrategias de control, siendo una de las más utilizadas el control PID. Actualmente, un PID en su forma más completa dispone de los siguientes elementos (Fossen, 2002): sensor para medida del rumbo ? y de su velocidad r, modelo de referencia que proporciona valores deseados para el rumbo, su velocidad y aceleración cuando hay cambios de rumbo, observador de estado y filtro del movimiento inducido por las olas, acción feedforward para un seguimiento perfecto para cambios de rumbo, acción feedforward para compensar la acción del viento, y, por último, mecanismo de adaptación a las condiciones del entorno. El controlador se puede extender para incluir una acción proporcional a la aceleración de ?, de este modo se incrementa la inercia del VM para reducir el efecto de las perturbaciones.

Referencias bibliográficas

  • Abkowitz, M.A., 1964. Lecturenotes on ship hydrodynamics-steering and manoeuvrability. Technical Report Hy-5. Hydro and Aerodynamics Laboratory Lyngby, Denmark, 1964.
  • Abkowitz, M.A. 1980. Measurement of hydrodynamic characteristic from ship maneuvering trials by system identification, Transactions of the Society of Naval Architects and Marine Engineers, 88, pp. 283–318.
  • ABS, 2006. Guide for Vessel Maneuverability. American Bureau of Shipping. ABS Plaza 16855 Northchase Drive, Houston, TX 77060 USA.
  • Aguiar, A. P., Daþiü, D. B., Hespanha, J. P. and P. Kokotovic. 2004. Path following or reference-tracking? An answer based on limits of performance. In: Proc. 5th IFAC/EURON Symp. Intell. Auton. Veh., Lisbon, Portugal, Jul. 2004.
  • Aguiar, A.P., Hespanha, J. P. and Kokotoviü, P. 2005.Path-following for non minimum phase systems removes performance limitations. IEEE Trans. Autom. Control, vol. 50, 2, pp. 234–239.
  • Aguiar, A.P. and Hespanha, J. P. 2007. Trajectory-Tracking and Path Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Trans. Autom. Control, vol. 52, 8, pp. 1362– 1379.
  • Aranda, J., de la Cruz, J.M., Diaz, J.M., de Andrés, B, Ruiperez, P., Esteban, S., Girón, J.M., 2000. Modelling of a High Speed Craft by a Nonlinear Least Squares Method with Constraints. Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. Pp. 227-232.
  • Aranda, J., de la Cruz, J.M., Diaz, J.M.,2004. Identification of multivariable models of fast ferries. European Journal of Control, 10 (2), pp. 187–198.
  • Aranda, J., de la Cruz, J.M., Diaz, J.M., 2005a. Design of a multivariable robust controller to decrease the motion sickness incidence in fast ferries. Control Engineering Practice 13 (8), pp. 985–999.
  • Aranda, J., Muñoz-Mansilla, R., DÕaz, J.M., 2005b. Robust control for the coupling of lateral and longitudinal dynamics in high-speed crafts. In: Proceedings of the 16th World Congress of the IFAC, Prague.
  • Ashrafiuon, H., and Muske, K. R., 2008. Sliding Mode Tracking Control of Surface Vessels. 2008 American Control Conference, pp.-558-561.
  • Aström, K.J., Källström, C.G., 1976. Identification of ship steering dynamics. Automatica12 (1), pp. 9–22.
  • Barros, E.A., Pascoal, A. and de Sa, E., 2008. Investigation of a method for predicting AUV derivatives. Ocean Engenieering, vol. 35, pp. 1627-1636.
  • Behal, A., Dawson, D., Dixon, W. and Fang, Y. 2002. Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control, vol. 47, 3, pp. 495–500.
  • Bhattacharyya, S. K. and Haddara M. R., 2006. Parametric Identification for Nonlinear Ship Maneuvering. Journal of Ship Research, Vol. 50, No. 3, September 2006, pp. 197–207.
  • Bennet, S., 1979. A History of Control Engineering 1800-1930. Peter Peregrinus. London.
  • Bennet, S., 1984. Nicolas Minorsky and the Automatic Steering of Ships. IEEE Control Systems Magazine, vol. 4, 4, pp.10-15.
  • Blanke, M., Knudsen, M., 2006. Efficient parameterization for grey-box model identification of complex physical systems. In: 14th IFAC Symposium on System Identification, SYSID 2006, NewCastle, Australia, pp. 338–343.
  • Casado, M. H. and Ferreiro, R, 2005. Identification of the nonlinear ship model parameters based on the turning test trial and the backstepping procedure. Ocean Engineering, vol. 32, pp.1350-1369.
  • Casado, M.H., Ferreiro, R. and Velasco, F.J., 2007. Identification of Nonlinear Ship Model Parameters Based Turning Circle Test. Journal of Ship Research, vol. 51, 2, pp. 174-181.
  • Chwa, D., 2011. Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method. IEEE Trans. Control Syst. Techno., vol. 19, 6, pp. 1357-1370.
  • Cummins, W.E., 1962. The impulse response funtion and ship motions. Schiffstechnik 9, 47, pp. 101–109.
  • De la Cruz, J.M., Aranda, J., Ruiperez, P., Diaz, J.M., Marón, A, 1998. Identification of the Vertical Plane Motion Model of a High Speed Craft by Model Testing in Irregular Waves. Proceedings of the IFAC Conference on Control Applications in Marine Systems (CAMS’98) Fukuoka, Japan. Pp. 257-262.
  • De la Cruz, J.M., Aranda, J., Giron-Sierra, J.M., Velasco, F., Esteban, S., Diaz, J.M. and Andres-Toro, B., 2004. Improving the Confort of a Fast Ferry. IEEE Control Systems Magazine, April, 2004, pp. 47-60.
  • Do, K.D. 2002. Universal controllers for stabilization and tracking of underactuated ships,” Syst. Control Lett., vol. 47, pp. 299–317.
  • Do, K.D., Jiang, Z.P. and J. Pan, J. 2002. Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control, vol. 47, no. 9, pp. 1529–1536.
  • Do, K. D., Jiang, Z. P., & Pan, J. 2003. Robust global stabilization of underactuated ships on a linear course: State and output feedback. International Journal of Control, 76, pp. 1–17.
  • Do, K. D., Pan, J., 2003. Global way point tracking control of underactuated ships under relaxed assumptions. In: Proceedings of the 42 nd IEEE Conference on Decision and Control, pp. 1244–1249.
  • Do, K.D., Jiang, Z.P. and Pan, J. 2004. Robust adaptive path following of underactuated ships,” Automatica, vol. 40, no. 6, pp. 929–944.
  • Do, K. D., Pan, J. and Jiang, Z. P. 2004. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering, vol. 31, pp. 1967–1997.
  • Do, K. D., Pan, J., 2005. Global tracking of underactuated ships with nonzero off- diagonal terms. Automatica 41, 87–95.
  • Do, K. D., Pan, J., 2009. Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Springer, London.
  • Do, K.D., 2010. Practical control of underactuated ships. Ocean Engineering, vol. 37, pp. 1111-1119.
  • Encarnaçao, P., Pascoal, A., Arcak, M., 2000a. Path following for autonomous marine craft. In: Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 117–122.
  • Encarnaçao, P. and A. M. Pascoal, 2000b. 3D path following control of autonomous underwater vehicles. In: Proc. 39th Conf. Decision Control, Sydney, Australia, Dec. 2000.
  • Encarnaçao, P., and Pascoal, A. 2001. Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft. In: Proceedingsof the 40th IEEE Conference on Decision and Control, Orlando, FL, vol 1, pp. 964-969.
  • Esteban, S., De la Cruz, J.M., Girón-Sierra, J.M., Andrés, B., Diaz, J.M., Aranda, J., 2000. Fast Ferry Vertical Acceleration Reduction with Active Flaps and T-Foil. In: Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. pp. 233-238.
  • Faltinsen, O.M., 1990. Sea loads on ships and offshore structures. Cambridge University Press.
  • Faltinsen, O.M., 2005. Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New York.
  • Fang M.C. and Luo J.H., 2008a, “The Ship Track Keeping with Roll Reduction Using a Multiple-states PD Controller on the Rudder Operation”, Marine Technology, 2008, 45(1), pp. 21-27.
  • France, W.M, Levadou, M, Treakle, T.W., Paulling, J. R., Michel, K. and Moore, C., 2003. An Investigation of Head-Sea Parametric Rolling and its Influence on Container Lashing Systems, Marine Technology¸ Vol. 40, 1, pp. 1-19.
  • Francescutto, A., G. Bulian, G. and & Lugni, C., 2004. Nonlinear and stochastic aspects of parametric rolling. Marine Technology, 41, 2.
  • Fedyaevsky, K, K. and Sobolev G.V., 1963. Control and stability in ship design. State Union Shipbuilding House.
  • Francescutto, A., G. Bulian, G. and & Lugni, C., 2004. Nonlinear and stochastic aspects of parametric rolling. Marine Technology, 41, 2.
  • Fredriksen, E., Pettersen, K.Y., 2006. Global N–exponential way-point maneuvering of ships: Theory and experiments. Automatica 42, pp.677 – 687.
  • Fossen, T.I., 1994. Guidance and Control of Ocean Vehicles. Wiley.
  • Fossen, T.I., Sagatun, S.I. and Sorensen, A.J. 1996. Identification of dynamically positioned ships. Modeling, Identification and Control, vol 17, 2, pp.153-165.
  • Fossen, T.I., 2002. Marine Control Systems. Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics.
  • Fossen, T. I., Breivik, M., & Skjetne, R. (2003). Line-of-Sight Path Following of Underactuated Marine Craft. Proceedings IFAC MCMC’03.
  • Fossen, T. I., 2011. Marine craft hydrodynamics and motion control. John Wiley & Sons.
  • Galeazzi, R. and Perez, T., 2011. A Nonlinear Observer for Estimating Transverse Stability Parameters of Marine Surface Vessels. In Proc. of the 18th IFAC World Congress, Milan Italy.
  • Galeazzi, R., Holden, C., Blanke, M. and; Fosse n, T.I., 2009a. Stabilisation of Parametric Roll Resonance by Combined Speed and Fin Stabiliser Control. Proc. of the European Control Conference, pp. 4895-4900.
  • Galeazzi, R., Blanke, M. and Poulsen, N. K., 2009b. Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow. In: 7th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes. Sants Hotel, Spain.
  • Godhavn, J. M. 1996. Nonlinear tracking of underactuated surface vessels. In Proc. 35th IEEE Conference Decision and Control, Kobe, Japan, pp. 987–991.
  • Giron-Sierra, J.M., Esteban, S., Andres, B., Diaz, J.M. and J.M. Riola, J. M., 2001.Experimental study of controlled flaps and T-foil for comfort improvement of a fast ferry. In Proc. IFAC Intl. Conf. Control Applications in Marine Systems CAMS 2001, Glasgow, U.K.
  • J.M. Girón-Sierra, J. Recas, S. Esteban, 2011. Iterative method based on cfd data for the assessment of seakeeping control effects, considering amplitude and rate saturation. Intl. J. Robust and Nonlinear Control, vol. 21, nº 13, 2011
  • Haddara, M., and Wang, Y, 1999. Parametric identification of manoevring models for ships, International Shipbuilding Progress, 46, 445, pp. 5–27.
  • Haddara, M.R., Xu, J.S., 1999. On the identification of ship coupled heave– pitch motions using neural networks. Ocean Engineering 26 (5), 381–400.
  • Holden, C., Galeazzi, R., Fossen, T. I., and Perez, Tristan, 2009. Stabilization of Parametric Roll Resonance with Active U-Tanks via Lyapunov Control Design. In: Proceedings of the European Control Conference pp. 4889- 4894. Budapest, Hungary
  • Hornik, K., Stinchcombe, M., White, H., 1989. Multilayer feed-forward networks are universal approximations. Neural Networks 2, 359–366.
  • Imlay, F.H., 1961. The complete expressions for added mass of a rigid body moving in an ideal fluid. Technical Report DTMB 1528. David Taylor Model Basin. Washington D.C.
  • IMO, 2002. International Maritime Organization: Resolution “Standards for Ship Maneuverability”. MSC.137 (76) 4 December 2002.
  • Javanoski, Z. and Robinso, G., 2009. Ship stability and parametric rolling. Australian Journal of Engineering Education, vol.15, 2, pp.43-50.
  • Jiang, Z.P. 2002. Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica, vol. 38, pp. 301–309.
  • Journée, J.M.J. and W.W. Massie, ”OFFSHORE HYDROMECHANICS”, First Edition, January 2001, Delft University of Technology.
  • Källström, C. G., Aström, K. J., Thorell, N. E., Eriksson, J. and L. Sten, 1979. Adaptive Autopilots for Tankers. Automatica, 15,3, pp. 241-254, May 1979.
  • Källström, C.G., Åström, K.J., 1981. Experiences of system identification applied to ship steering Automatica, 17, 1, pp. 187-198.
  • Kayton, M., 1990. Navigation. Land, Sea, Air & Space. IEEE Press, New York.
  • Kristiansen, E., Egeland, O, 2003. Frequency-dependent added mass in models for controller design for wave motion damping. Proceedings IFAC Conference Maneuvering and Control of Marine Craft (MCMC’03) Girona, Spain.
  • Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive Control Design. Wiley, New York
  • Lamb, H., 1932. Hydrodynamics, 6th Edition. Dover, New York, Chapter VI.
  • Lloyd, A.E.J.M., 1989. Seakeeping; ship behavior in rough water. Ellis Horwood Ltd.
  • Levadou, M and van’t Veer R., 2011. Parametric roll and ship design. In: M.A.S. Neves et al. (eds). Contemporary Ideas on Ship Stability and Capsizing in Waves. Fluid Mechanics and Its applications 96, pp.307-330. Springer. DOI 10.1007/978-94-007-1482-3_18.
  • Lewis, E.V., 1989. Principles of Naval Architecture, Society of Naval Architects & Marine Engineers (SNAME), New Jersey, 1989.
  • Liao, Y., Wan, L. and Zhuang, J., 2011. aBackstepping dynamical sliding mode control method for the path following of the underactuated surface vessel. Procedia Engineering 15, pp. 256 – 263.
  • Luo W. L. and Zou Z. J., 2009. Parametric Identification of Ship Maneuvering Modelsby Using Support Vector Machines.Journal of Ship Research, Vol. 53, 1, pp. 19–30.
  • Mahfouz, A.B., and Haddara, M.R. 2003. Effects of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle, Ocean Engineering, 30, pp. 1005–1025.
  • Mahfouz, A.B., 2004. Identification of the nonlinear ship rolling motion equation using the measured response at sea, Ocean Engineering, 31, pp. 2139–2156.
  • Muñoz-Mansilla R., Aranda J., Diaaz J.M., de la Cruz, J.M., 2009. Parametric Model Identification of High-Speed Craft Dynamics. Ocean Engineering, 36, pp. 1025-1038.
  • Newman, J.N., 1977. Marine Hydrodynamics. MIT Press.
  • Nguyen, T. D., Sorensen, A. J., & Quek, S. T. (2007). Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica, 43(5), pp.768–785.
  • O’Brien, J., 2009. Multi-path nonlinear dynamic compensation for rudder roll stabilization. Control Engineering Practice, vol. 17, pp. 1405–1414.
  • Ogilvie, T.F., 1964. Recent progress toward the understanding and prediction of ship motions. In: The Fifth Symposium on Naval Hydrodynamics. pp. 3–128.
  • Ohtsu, K., Horigome, M. and G. Kitagawa, 1979. A New Ship’s Auto Pilot Design Through a Stochastic Model. Automatica, 15,3, pp 255-268, May 1979.
  • Panneer Selvam, R., Bhattacharyya, S. K. and Haddara M. R., 2005. A frequency domain system identification method for linear ship maneuvering. International Shipbuilding Progrress, 52, no. 1, pp. 5-27.
  • Perez, T., 2005. Ship Motion Control. Course Keeping and Roll Stabilization Using Rudder and Fins. Springer Verlag.
  • Perez, T., & Goodwin, G. (2007). Constrained predictive control of ship fin stabilizers to prevent dynamic stall. Control Engineering Practice, 16(4), 482–494.
  • Perez, T. and Fossen, T.I., 2008. Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed. Modeling, Identification and Control, Vol. 29, 1, pp. 1–19. Open source, http://www.mic-journal.no.
  • Perez, T. and Fossen, T.I., 2009. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures. Modeling, Identification and Control, Vol. 30, 1, pp. 1–15. Open source, http://www.mic-journal.no.
  • Perez, T. and Revestido-Herrero, E. (2010). Structure selection in nonlinear Ship manoeuvring models. In: 8th IFAC CAMS2010, Conference on Control Applications in Marine Systems. Warnemnde (Rostock).
  • Revestido-Herrero, E., Velasco, J., López, El and Moyano, E., 2012. Diseño de Experimentos para la Estimación de Parámetros de Modelos de Maniobra Lineales de Buques. Revista Iberoamericana de Automática e Informática.
  • Rueda, T.M., Velasco, F.J., Moyano, E., López, E. and de la Cruz, J.M., 2005. Application of a robust qft linear control method to the course changing manoeuvring of a ship. Journal of Maritime Research, Vol. 2, pp. 69-86.
  • Santos, M., López, R. and de la Cruz, J.M., 2004. Fuzzy control of the vertical acceleration of fast ferries. Control Engineering Practice, 13, pp. 305–313.
  • Sellars F.H. and Martin, J.P., 1992. Selection and evaluation ofship roll stabilization systems. SNAME, 29, 2, pp. 84-101.
  • Sørensen, A. J. (2005). Structural issues in the design and operation of marine control systems. Annual Reviews in Control, 29(1), pp. 125–149.
  • Sørensen, A. J. (2011). A survey of dynamic positioning control systems. Annual Reviews in Control, 35(1), pp. 123–136.
  • Toussaint, G. J., Basar, T., & Bullo, F. (2000). Hà·±-optimal tracking control techniques for nonlinear underactuated systems. IEEE Conf. Decision and Control. pp. 2078–2083.
  • Van Amerongen, J. and Udink Ten Cate, 1975. Model reference adaptive autopilots for ships Original Research Article Automatica, 11, 5, pp. 441-449.
  • Van Amerongen, J, 1984. Adaptive Steering of Ships-A Model Reference Approach. Automatica, 20, 1, pp. 3-14.
  • Velasco, F. J., Revestido, E., López, E. and Moyano, E. (2010). Remote laboratory for marine vehicles experimentation. Computer Applications in Engineering Education. doi:10.1002/cae.20444.
  • Yoon, H.K., and Rhee, K.P. 2003 Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique, Ocean Engineering, 30, 2379–2404.
  • Zhou, W.W. and Blanke, M., 1987. Nonlinear Recursive Prediction Error Method Applied to Identification of Ship Steering Dynamics. Proceedings of 8th Ship Control Systems Symposium. The Hague, Oct. 1987.
  • Zhou, W.W. and Blanke, M. 1989. Identification of a class of nonlinear state space models using RPE techniques, IEEE Transactions on Automatic Control, 34, 3, pp. 312–316.