Frying performance of two virgin oils from Cornicabra olives with different ripeness indices

  1. Olivero-David, R.
  2. Mena, C.
  3. Sánchez-Muniz, F. J.
  4. Pérez-Jiménez, M. Á.
  5. Holgado, F.
  6. Bastida, S.
  7. Velasco, J.
Revista:
Grasas y aceites

ISSN: 0017-3495 1988-4214

Ano de publicación: 2017

Volume: 68

Número: 4

Tipo: Artigo

DOI: 10.3989/GYA.0666171 DIALNET GOOGLE SCHOLAR lock_openAcceso aberto editor

Outras publicacións en: Grasas y aceites

Resumo

En el presente trabajo se evalúa el comportamiento de fritura de dos aceites de oliva virgen (VOO) obtenidos de aceitunas de la variedad Cornicabra con diferentes índices de maduración, 2,08 para VOO1 y 4,13 para VOO2. A lo largo de 40 operaciones de fritura con patatas se determinaron las alteraciones térmicas, oxidativas e hidrolíticas de los aceites. Los aceites iniciales presentaron composiciones de ácidos grasos e índices de estabilidad oxidativa determinados en Rancimat similares entre sí. Sin embargo, las cantidades de fenoles totales y tocoferol fueron más altas para VOO1. Los aceites mostraron una eficacia en fritura elevada y similar. No se encontraron diferencias significativas en los niveles de compuestos polares (PC) durante la fritura entre los dos aceites. Por tanto, la estabilidad en condiciones de fritura de los dos aceites Cornicabra no parece estar relacionada con el estado de maduración de las aceitunas. El límite de degradación de 25% de PC establecido en diferentes países se calculó por extrapolación de resultados, alcanzándose éste a las 55 operaciones de fritura para los dos aceites. Debido a que la toxicidad está relacionada con los niveles de compuestos formados, el uso en fritura de aceites de oliva virgen de la variedad Cornicabra es altamente recomendado.

Referencias bibliográficas

  • Alba-Mendoza J, Hidalgo-Casado F, Ruiz-Gómez MA, Martínez-Román F, Moyano-Pérez MJ, Cert A, Pérez-Camino MC, Ruiz-Méndez MV. 1996. Characteristics of the olive oils obtained from the first and second centrifugations. Grasas Aceites 47, 163–181.
  • AOAC. 1995. Official methods of analysis, 16th ed. Association of Official Analytical Chemists (AOAC), Washington, DC, USA, part 969.63.
  • Barrera-Arellano D, Ruiz-Méndez V, Velasco J, Márquez-Ruiz G, Dobarganes C. 2002. Loss of tocopherols and formation of degradation compounds at frying temperatures in oils differing in degree of unsaturation and natural antioxidant content. J. Sci. Food Agric. 82, 1696–1702. https://doi.org/10.1002/jsfa.1245
  • Bastida S, Sanchez-Muniz FJ. 2001. Thermal oxidation of olive oil, sunflower oil and mix of both during forty discontinuous domestic fryings of different foods. Food Sci. Technol. Int. 7, 15–21. https://doi.org/10.1106/1898-PLW3-6Y6H-8K22
  • Beltrán GC, Aguilera C, Del Rio C, Sánchez S, Martínez L. 2005. Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chem. 89, 207–215. https://doi.org/10.1016/j.foodchem.2004.02.027
  • Boskou D. 2011. Non-nutrient antioxidants and stability of frying oils, in Boskou D & Elmadfa I (Eds) Frying of Foods: Oxidation, Nutrient and Non-nutrient Antioxidants, Biologically Active Compounds and High Temperatures. Taylor and Francis Group, Boca Raton, FL, USA, 199–223.
  • Casal S, Malheiro R, Sendas A, Oliveira BP, Pereira JA. 2010. Olive oil stability under deep-frying conditions. Food Chem. Toxicol. 48, 2972–2979. https://doi.org/10.1016/j.fct.2010.07.036 PMid:20678538
  • Conde C, Delrot S. Gerós H. 2008. Physiological, biochemical and molecular changes occurring during olive development and ripening. J. Plant Physiol. 165, 1545–1562. https://doi.org/10.1016/j.jplph.2008.04.018 PMid:18571766
  • DGF (German Society for Fat Research). 2000. Proceedings of the 3rd international symposium of deep-fat frying. Final recommendations. Eur. J. Lipid Sci. Technol. 102, 594.
  • Dobarganes C, Márquez-Ruiz G. 2013. Analysis of used frying oils. Lipid Technol. 25, 159–162. https://doi.org/10.1002/lite.201300284
  • Dobarganes MC, Márquez-Ruiz G. 2007. Formation and analysis of oxidized monomeric, dimeric and higher oligomeric triglycerides, in Erickson MD (Ed.) Deep Frying: Chemistry, Nutrition and Practical Applications. American Oil Chemists' Society Press, Champaign, IL, USA, 87–110. https://doi.org/10.1016/B978-1-893997-92-9.50012-8
  • Dobarganes MC, Pérez-Camino MC, Márquez-Ruiz G. 1988. High performance size exclusion chromatography of polar compounds in heated and non-heated fats. Lipid/Fett 90, 308–311.
  • Dobarganes MC, Velasco J, Dieffenbacher A. 2000. Determination of polar compounds, polymerized an oxidized triacyglycerols, and diacylglycerols in oils and fats. Pure Appl. Chem. 72, 1563–1575. https://doi.org/10.1351/pac200072081563
  • Firestone D. 1998. Official methods and recommended practices of the American Oil Chemists' Society, 5th edn. American Oil Chemists' Society Press, Champaign, IL, USA.
  • IUPAC. 1992. Standard methods for the analysis of oils, fats and derivatives. Pergamon, Oxford, Regulation no. 2432.
  • Lumley ID. 1988. Polar compounds in heated oil, in Varela G. & Bender AE (Eds) Frying of Food. Principles, Changes, New Approaches. Ellis Horwood LTD, Chichester, UK, 166–173.
  • Márquez-Ruiz G, Tasioula-Margari M, Dobarganes MC. 1995. Quantitation and distribution of altered fatty acids in frying fats. J. Am. Oil Chem. Soc. 72, 1171–1176. https://doi.org/10.1007/BF02540984
  • Olivero-David R, Mena C, Pérez-Jimenez MA, Sastre B, Bastida S, Márquez-Ruiz G, Sánchez-Muniz FJ. 2014. Influence of Picual olive ripening on virgin olive oil alteration and stability during potato frying. J. Agric. Food Chem. 62, 11637–11646. https://doi.org/10.1021/jf503860j PMid:25390818
  • Olivero-David R, Paduano A, Fogliano V, Vitaglione P, Bastida S, González-Mu-oz MJ, Benedí J, Sacchi R, Sánchez-Muniz MJ. 2011. Effect of thermally oxidized oil and fasting status on the short-term digestibility of ketolinoleic acids and total oxidized fatty acids in rats. J. Agric. Food Chem. 59, 4684–4691. https://doi.org/10.1021/jf1048063 PMid:21425778
  • Romero A, Cuesta C, Sánchez-Muniz FJ. 1995. Quantitation and distribution of polar compounds in an extra virgin olive oil used in fryings with turnover of fresh oil. Lipid/Fett 97, 403–407. https://doi.org/10.1002/lipi.2700971102
  • Romero A, Cuesta C, Sánchez-Muniz FJ. 2000. Deep fat frying of frozen foods in sunflower oil. Fatty acid composition in fryer oil and frozen prefried potatoes. J. Sci. Food Agric. 80, 2135–2141. https://doi.org/10.1002/1097-0010(200011)80:14<2135::AID-JSFA739>3.0.CO;2-K
  • Romero A, Cuesta C, Sánchez-Muniz FJ. 2003. Cyclic fatty acid monomers in high oleic sunflower oil and extra virgin olive oil used in repeated frying of fresh potatoes. J. Am. Oil Chem. Soc. 80, 437–442. https://doi.org/10.1007/s11746-003-0717-x
  • Salvador MD, Aranda F, Gómez-Alonso S, Fregapane G. 2001a. Cornicabra virgin olive oil: a study of five crop seasons. Composition, quality and oxidative stability. Food Chem. 74, 267–274. https://doi.org/10.1016/S0308-8146(01)00148-0
  • Salvador MD, Aranda F, Fregapane G. 2001b. Influence of fruit ripening on "Cornicabra" virgin olive oil quality. A study of four successive crop seasons. Food Chem. 73, 45–53. https://doi.org/10.1016/S0308-8146(00)00276-4
  • Sánchez-Casas J, Osorio E, Monta-o A, Martínez M. 2003. Estudio del contenido en ácidos grasos de aceites monovarietales elaborados a partir de aceitunas producidas en la región extreme-a. Grasas Aceites 54, 371–377.
  • Sánchez-Muniz FJ, Bastida S, Márquez-Ruiz G, Dobarganes C. 2008. Effects of heating and frying on oil and food fatty acids, in Chow CK (Ed.) Fatty Acids Foods and their Implications. Taylor and Francis Group, Boca Raton, FL, USA, 511–543.
  • Servili M, Selvaggini R, Esposto S, Taticchi A, Montedoro GF, Morozzi G. 2004. Health and sensory properties of virgin olive oil hydrophilic phenols: agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. B 1054, 113–127. https://doi.org/10.1016/S0021-9673(04)01423-2
  • ?kevin D, Rade D, ?trucelj D, Mokrov?ak Z, Ne?eral S, Ben?i? D. 2003. The influence of variety and harvest time on the bitterness and phenolic compounds of olive oil. Eur. J. Lipid Sci. Technol. 105, 536–541.
  • Uceda M, Frias L. 1975. Época de recolección. Evolución del contenido graso y de la composición y la calidad del aceite, in: Proceedings II Seminario Oleícola Internacional, Córdoba, Spain.
  • Vázquez-Roncero A, Janer C, Janer ML. 1975. Determinación de polifenoles totales del aceite de oliva. Grasas Aceites 24, 350–355.
  • Velasco J, Dobarganes C. 2002. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 104, 661–676. https://doi.org/10.1002/1438-9312(200210)104:9/10<661::AID-EJLT661>3.0.CO;2-D
  • Velasco J, Marmesat S, Berdeaux O, Márquez-Ruiz G, Dobarganes C. 2005. Quantitation of short-chain glycerol-bound compounds in thermoxidized and used frying oils. A monitoring study during thermoxidation of olive and sunflower oils. J. Agric. Food Chem. 53, 4006–4011. https://doi.org/10.1021/jf050050t
  • Yousfi K, Cert RM, García JM. 2006. Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. Eur. Food Res. Technol. 223, 117–124. https://doi.org/10.1007/s00217-005-0160-5