Factores sociocognitivos asociados a la elección de estudios científico-matemáticos. Un análisis diferencial por sexo y curso en la Educación Secundaria

  1. Romero, Isabel María Vázquez 1
  2. Blanco Blanco, Ángeles 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

Revista:
Revista de investigación educativa, RIE

ISSN: 0212-4068 1989-9106

Año de publicación: 2019

Volumen: 37

Número: 1

Páginas: 269-286

Tipo: Artículo

DOI: 10.6018/RIE.37.1.303531 DIALNET GOOGLE SCHOLAR lock_openDIGITUM editor

Otras publicaciones en: Revista de investigación educativa, RIE

Objetivos de desarrollo sostenible

Resumen

This study is part of the research aimed at understanding vocational choice trajectories of students in professional areas related to science, technology, engineering and mathematics (STEM). Due to the well-known gender gap, the study is focused on analyzing possible differences between women and men in several socio-cognitive variables with a well-established relevance in vocational development. Differences along different grades of secondary education are also discussed. Social Cognitive Career Theory (SCCT) is used as a framework. In this study 1,465 high school Spanish students were involved. All of them were evaluated for self-efficacy, outcome expectations, interests, support, occupational aspirations and perceived social barriers when starting careers in the science/mathematics area. Non-parametric statistic tests were applied as well as measures of the effect size comparing by gender and course. Significant differences were found in favor of males, usually of low magnitude, in all the variables analyzed with the exception of those concerning the occupational aspirations. Likewise, a significant tendency was identified to present lower averages in all the variables as it progresses in secondary school. However, the general pattern of results showed differentiating aspects when considering a course and/or a kind of high school curriculum. The results are discussed in the context of the previous research on this topic and future lines of work are suggested from the point of view of the research and also educational intervention.

Información de financiación

Este estudio fue diseñado durante una estancia de investigación en la Universidad de Maryland (USA) realizada por la autora de contacto con la financiación del Ministerio de Economía y Competitividad (Programa Nacional de Movilidad de Recursos Humanos, Programa José Castillejo), bajo la supervisión del profesor Robert W. Lent.

Referencias bibliográficas

  • Alloza, F. M., Anghel, B., Dolado, J. J., De la Rica, S., & Sánchez de Madariaga, I. (2011). Libro Blanco: Situación de las mujeres en la ciencia española. Madrid: Ministerio de Ciencia e innovación.
  • Bandura, A., Barbaranelli, C., Caprara, G. V., & Pastorelli, C. (2001). Self-efficacy beliefs as shapers of children’s aspirations and career trajectories. Child development, 72(1), 187-206. http://dx.doi.org/10.1111/1467-8624.00273.
  • Blanco, A. (2011). Applying social cognitive career theory to predict interests and choice goals in statistics among Spanish psychology students. Journal of Vocational Behavior, 78, 49-58. http://dx.doi.org/10.1016/j.jvb.2010.07.003.
  • Blanco-Blanco, A., Casas, Y., & Mafokozi, J. (2016). Adaptación y propiedades psicométricas de escalas sociocognitivas. Una aplicación en el ámbito vocacional científico-matemático. Revista Española de Orientación y Psicopedagogía, 27(1), 8-28. http://dx.doi.org/10.5944/reop.vol.27.num.1.2016.17005.
  • Byars-Winston, A., Estrada, Y., Howard, C., Davis, D., & Zalapa, J. (2010). Influence of social cognitive and ethnic variables on academic goals of underrepresented students in science and engineering: A multiple-groups analysis. Journal of Coun- seling Psychology, 57(2), 205-218. http://dx.doi.org/10.1037/a0018608.
  • Canto, J. E. (2000). Certeza de elección de carrera y preferencia vocacional. Educación y Ciencia, 4(7), 43-55. http://educacionyciencia.org/index.php/educacionyciencia/article/download/136/pdf
  • Centro para el Desarrollo Técnico Industrial-CDTI (2014). Guía Horizonte 2020. Madrid: Autor.
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2a ed.). Hillsdale,New Jersey: Erlbaum.
  • Corder, G. W., & Foreman, D. I. (2009). Non parametric Statistics for non-statistician. A step-by-step approch. Hoboken, New Jersey: John Wiley & Sons.
  • Flores, L., & O’Brien, K. (2002). The career development of Mexican American adolescent women: a test of social cognitive career theory. Journal of Counseling Psychology, 49(1), 14-27. http://dx.doi.org/10.1037/0022- 0167.49.1.14.
  • Fouad, N. A., & Smith, P. L. (1996). A test of a social cognitive model for middle school students: Math and science. Journal of Counseling Psychology, 43(3), 338-346. http://dx.doi.org/10.1037/0022-0167.43.3.338.
  • Garriot, P.O., Flores, L.Y., & Martens, M.P. (2013). Predicting the math/science career goals of low-income prospective first-generation college students. Journal of Coun- seling Psychology, 60(2), 200-209. http://dx.doi.org/10.1037/a0032074.
  • Hidalgo, S. A., Maroto, A. S., & Palacios, A. P. (2004). ¿Por qué se rechazan las matemáticas? Análisis evolutivo y multivariante de actitudes relevantes hacia las matemáticas. Revista de Educación, 334, 75-95. http://www.revistaeducacion.mec.es/re334_06.htm
  • Lent, R. W., Brown, S. D., & Hackett, G. (1994). Toward a unifying social cognitive theory of career and academic interest, choice, and performance. Journal of Voca- tional Behavior, 45(1), 79-122. http://dx.doi.org/10.1006/jvbe.1994.1027.
  • Lent, R. W., Brown, S. D., & Hackett, G. (2000). Contextual supports and barriers to career choice: a social cognitive analysis. Journal of Counseling Psychology, 47(1), 36-49. http://dx.doi.org/10.1037//0022-0167.47.1.36.
  • Lent, R. W., Brown, S. D., Brenner, B., Chopra, S. B., Davis, T., Talleyrand, R., & Sthakaran, V. (2001). The role of contextual supports and barriers in the choice of math/science educational options: A test of social cognitive career hypotheses. Journal of Counseling Psychology, 48(4), 474-483. http://dx.doi.org/10.1037//0022-0167.48.4.474
  • Lent, R. W., Sheu, H., Gloster, C. S., & Wilkins, G. (2010). Longitudinal test of social cognitive model of choice in engineering students at historically black universities. Journal of Vocational Behavior, 76(3), 387-394.
  • Lent, R. W., Sheu, H., Singley, D., Schmidt, J., Schmidt, L., & Gloster, C. (2008). Longitudinal relations of self-efficacy to outcome expectations, interest, and major choice goals in engineering students. Journal of Vocational Behavior, 73(2), 328-335. http://dx.doi.org/10.1016/j.jvb.2008.07.005.
  • Navarro, R.L., Flores, L.Y., & Worthington, R.L. (2007). Mexican American middle school students’ goal intentions in mathematics and science: a test of social cogni- tive career theory. Journal of Counseling Psychology, 54(3), 320-335. http://dx.doi.org/10.1037/0022-0167.54.3.320.
  • Núñez, J. C., González-Pienda, J. A., Alvarez, L., González-Castro, P., González- Pumariega, S., Roces, C., ... & Da Silva, E. H. (2005). Las actitudes hacia las matemáticas: perspectiva evolutiva. En Actas do VIII Congreso Galaico-Portugués de Psicopedagoxía, 2389-2396. http://www.educacion.udc.es/grupos/gipdae/documentos/congreso/viiicongreso/pdfs/291.pdf.
  • O’Brien, V., Martínez-Pons, M., & Kopola, M. (1999). Mathematics self-efficacy, ethnic identity, gender and career interests related to mathematics and science. The Journal of Educational Research, 92(4), 231–235. http://dx.doi.org/10.1080/00220679909597600.
  • OECD (2008). Encouraging Student Interest in Science and Technology Studies. Paris: OECD.
  • Rodríguez C., Inda, M., & Fernández, M.C. (2016). Influence of social cognitive and gender variables on technological academic interest among Spanish high-school students: testing social cognitive career theory. International Journal for Educational and Vocational Guidance,16 (3), 305-325. http://dx.doi.org/10.1007/s10775-015-9312-8.
  • Rodríguez, M. C., Inda, M. M., & Peña, J. V. (2014). Rendimiento en la PAU y elección de estudios científico-tecnológicos en razón de género. Revista Española de Orientación y Psicopedagogía, 25(1), 111-127. http://dx.doi.org/10.5944/reop.vol.25.num.1.2014.12016.
  • Rodríguez, M. C., Inda, M. M., & Peña, J. V. (2014). Rendimiento en la PAU y elección de estudios científico-tecnológicos en razón de género. Revista Española de Orientación y Psicopedagogía, 25(1), 111-127. http://dx.doi.org/10.5944/reop.vol.25.num.1.2014.12016.
  • Rodríguez, M. C., Inda, M. M., & Peña, J. V. (2015). Validación de la Teoría Cognitivo Social de Desarrollo de Carrera con una muestra de estudiantes de ingeniería. Educación XX1, 18(2), 257-276. http://hppt://dx.doi.org/10.5944/educXX1.14018
  • Rodríguez, M. C., Peña, J. V., & Inda, M. M. (2012). Creencias de autoeficacia y elección femenina de estudios científico-tecnológicos. Teoría de la Educación, 24(1), 81-104. http://gredos.usal.es/jspui/bitstream/10366/131084/1/Creencias_ de_autoeficacia_y_eleccion_fem.pdf
  • Rodríguez, M. C., Torío, L. S., & Fernández, G. C. M. (2006). El impacto del género en las elecciones académicas de los estudiantes asturianos que finalizan la ESO. Revista Española de Orientación y Psicopedagogía, 2(2), 239-260. http://dx.doi.org/10.5944/reop.vol.17.num.2.2006.11351.
  • Rovai, A. P., Baker, J. D., & Ponton, M. (2014). Social Science Research Design and Statistics. A practitioner´s guide to research methods and IMB SPSS analysis (2a ed.). Chesapeake, Virginia: Watertree Press LLC.
  • Santana, L. E., Feliciano, L., & Jiménez, A. B. (2012). Toma de decisiones y género en el bachillerato. Revista de Educación, 359, 357-387. http://dx.doi.org/10.5944/10.4438/1988-592X-RE-2011-359-098.
  • Sheu, H., & Bordon, J. (2017). SCCT research in the international context: empirical evidence, future directions, and practical implications. Journal of Career Assessment, 25(1), 58-74. http://dx.doi.org/10.5944/10.1177/1069072716657826
  • Sheu, H., Lent, R. W., Brown, S., Miller, M., Hennessy, K., & Duffy, R. D. (2010). Testing the choice model of social cognitive career theory across Holland themes: A meta-analytic path analysis. Journal of Vocational Behavior, 76(2), 252–264. http://dx.doi.org/10.1016/j.jvb.2009.10.015.
  • Turner, S. L., & Lapan, R. T. (2005). Evaluation of an intervention to increase non-traditional career interests and career-related self-efficacy among middle-school ado- lescents. Journal of Vocational Behavior, 66(3), 516-531. http://dx.doi.org/10.1016/j.jvb.2004.02.005.
  • Vázquez, A., & Manassero, M. A. (2005). La ciencia escolar vista por los estudiantes. Bordón: Revista de Pedagogía, 57(5), 717-736. https://recyt.fecyt.es/index.php/BORDON/article/view/40802
  • Vázquez, A., & Manassero, M. A. (2008). El declive de las actitudes hacia la ciencia de los estudiantes: un indicador inquietante para la educación científica. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 5(3), 274-292. https://revistas.uca.es/index.php/eureka/article/view/3740
  • Vázquez, A., & Manassero, M. A. (2009). Patrones actitudinales de la vocación científica y tecnológica en chicas y chicos de secundaria. Revista Iberoamericana de Educación, 50(4), 1-15. https://rieoei.org/RIE/article/view/1879
  • Vázquez, A., & Manassero, M. A. (2015). La elección de estudios superiores científico- técnicos: análisis de algunos factores determinantes en seis países. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 12(2), 264-277. http://dx.doi.org/10498/17251.
  • Wang, M., & Degol, J. (2013). Motivational Pathways to STEM Career Choices: Using Expectancy-Value Perspective to Understand Individual and Gender Differences in STEM Fields. Developmental Review, 33(4), 304-340. http://dx.doi.org/10.1016/j.dr.2013.08.001.
  • Wang, X. (2013). Why students choose STEM majors: motivation, high school learning, and postsecondary context of support. American Educational Research Journal, 50(5), 1081-1121. http://dx.doi.org/10.3102/0002831213488622