Presente y futuro de las técnicas aplicadas al estudio de la estacionalidad

  1. Sánchez Flores, Antonio Jesús 1
  2. Arriaza, Mari Carmen 2
  3. Sainz de los Terreros, José Yravedra 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 University of the Witwatersrand
    info

    University of the Witwatersrand

    Johannesburgo, Sudáfrica

    ROR https://ror.org/03rp50x72

Revista:
Complutum

ISSN: 1131-6993 1988-2327

Año de publicación: 2018

Volumen: 29

Número: 2

Páginas: 407-426

Tipo: Artículo

DOI: 10.5209/CMPL.62587 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Complutum

Resumen

A mediados del siglo XX, los métodos de los estudios de estacionalidad surgieron para intentar establecer el momento del año y el tiempo de ocupación en el que se habitaron los yacimientos arqueológicos. Sin embargo, las limitaciones de estas técnicas, basadas fundamentalmente en restos óseos fósiles, han dificultado la interpretación de estos datos. Este trabajo hace una relación de la mayoría de métodos utilizados para los estudios estacionales hasta la fecha, para facilitar su comprensión y su futura aplicación, destacando las virtudes y los defectos de cada uno.

Referencias bibliográficas

  • Arceredillo, D.; Díez, C. (2009): Age of death and seasonality based on ungulate tooth remains from the Upper Pleistocene site of Valdegoba (Burgos, Spain). Journal of Taphonomy 7: 75-91.
  • Banfield, A. W. F. 1960: The use of caribou antler pedicles for age determination. Journal of Wildlife Management, 24: 99–102.
  • Bargalló, A.; Gabucio, M.J.; Rivals, F. (2016): Puzzling out a palimpsest: Testing an interdisciplinary study in level O of Abric Romaní. Quaternary International 417: 51–65. https://doi.org/10.1016/j. quaint.2015.09.066
  • Britton, K.; Grimes, V.; Dau, J.; Richards, M.P. (2009): Reconstructing faunal migrations using intra-tooth sampling and strontium and oxygen isotope analyses: a case study of modern caribou (Rangifer tarandus granti). Journal of Archaeological Science 36: 1163–1172. doi:10.1016/j.jas.2009.01.003
  • Bull, I.D.; Lockheart, M.J.; Elhmmali, M.M.; Roberts, D.J.; Evershed, R.P. (2012): The origin of faeces by means of biomarker detection. Environtal International 27: 647–654.
  • Burke, A.; Castanet, J. (1995): Histological observations of cementum growth in horse teeth and their application to archaeology. Journal of Archaeological Science 22: 479–493.
  • Carrancho, Á.; Villalaín, J.J.; Vallverdú, J.; Carbonell, E. (2016): Is it possible to identify temporal differences among combustion features in Middle Palaeolithic palimpsests? The archaeomagnetic evidence: A case study from level O at the Abric Romaní rock-shelter (Capellades, Spain). Quaternary International 417: 39–50. https://doi.org/10.1016/j.quaint.2015.12.083
  • Carré, M.; Bentaleb, I.; Bruguier, O.; Ordinola, E.; Barrett, N.T.; Fontugne, M. (2006): Calcification rate influence on trace element concentrations in aragonitic bivalve shells: Evidences and mechanisms. Geochimica et Cosmochimica Acta 70: 4906–4920. doi:10.1016/j.gca.2006.07.019
  • Casteel, R.W. (1976): Fish remains in archaeology and paleoenvironmental studies. New York: Academic Press.
  • Chaix, L.; Méniel, P. (2001): Archéozoologie: les animaux et l’archéologie. Editions Errance, Paris.
  • Davis, S.J.M. (1987): The archaeology of animals. Batsford Ltd, London.
  • Deniz, E.; Payne, S. (1982): Eruption and wear in the mandibular dentition as a guide to ageing Turkish Angora goats. En Wilson, B.; Grigson, C.; Payne, S. (ed.): Ageing and Sexing Animal Bones from Achaeological Sites. British Archaeological Reports, British Series, vol. 109. BAR, Oxford: 153–206.
  • DeSantis, L.R.G.; Scott, J.R.; Schubert, B.W.; Donohue, S.L.; McCray, B.M.; Van Stolk, C.A.; Winburn, A.A.; Greshko, M.A.; O’Hara, M.C. (2013): Direct Comparisons of 2D and 3D Dental Microwear Proxies in Extant Herbivorous and Carnivorous Mammals. PLOS ONE 8: e71428. https://doi. org/10.1371/journal.pone.0071428
  • Dincauze, D. F. (1976): The Neville Site: 8,000 years at Amoskeag, Manchester, New Hampshire. Peabody Museum Monographs, 4.
  • Domingo, L.; Pérez-Dios, P.; Hernández Fernández, M.; Martín-Chivelet, J.; Ortiz, J.E.; Torres, T. (2015): Late Quaternary climatic and environmental conditions of northern Spain: An isotopic approach based on the mammalian record from La Paloma cave. Palaeogeography, Palaeoclimatology, Palaeoecology 440: 417–430. doi:10.1016/j.palaeo.2015.09.017
  • Fabre, M.; Lécuyer, C.; Brugal, J.-P.; Amiot, R.; Fourel, F.; Martineau, F. (2011): Late Pleistocene climatic change in the French Jura (Gigny) recorded in the d18O of phosphate from ungulate tooth enamel. Quaternary Research 75: 605–613.
  • Fisher, D.C.; Fox, D.L. (2007): Season of death of the Dent mammoths. En Brunswig, R.H.; Pitblado, B.L. (ed.): Paleoindian Archaeology: From the Dent Site to the Rocky Mountains. The University Press of Colorado, Boulder, Colorado: 123–153.
  • Fortelius, M.; Solounias, N. (2000): Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 1–36.
  • Frickle, H.C.; Clyde, W.C.; O’Neil, J.R. (1998): Intra-tooth variations in δ 18 O (PO 4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62: 1839–1850.
  • García-Escárzaga, A.; Moncayo, S.; Gutiérrez Zugasti, I.; González Morales, M. R.; Martín- Chivelet, J.; Cáceres, J. O. (2015): Mg/Ca ratios measured by laser induced breakdown spectroscopy (LIBS): a new approach to decipher environmental conditions. Journal of Analytical Atomic Spectrometry 30: 1913–1919. DOI: 10.1039/C5JA00168D
  • Goillot, C.; Blondel, C.; Peigné, S. (2009): Relationships between dental microwear and diet in Carnivora (Mammalia) — Implications for the reconstruction of the diet of extinct taxa. Palaeogeography, Pa-laeoclimatology, Palaeoecology 271: 13–23. doi:10.1016/j.palaeo.2008.09.004
  • Grant, A. (1982): The use of tooth wear as a guide to the age of domestic ungulates. En Wilson, R.; Grigson, C.; Payne, S. (ed.): Ageing and Sexing Animal Bones from Archaeological Sites. British Archaeological Reports, British Series, vol. 109. BAR, Oxford: 91–108.
  • Greenfield, H.J.; Arnold, E.R. (2008): Absolute age and tooth eruption and wear sequences in sheep and goat: determining age-at-death in zooarchaeology using a modern control sample. Journal of Archaeo-logical Science 35: 836–849. doi:10.1016/j.jas.2007.06.003
  • Greenfield, H.J.; Moore, N.C.; Steppan, K. (2015): Estimating the age- and season-of-death for wild equids: a comparison of techniques utilising a sample from the late neolithic site of Bad Buchau-Dullenried, Germany. Open Quaternary 1. doi:10.5334/oq.ac
  • Hoppe, K.A.; Amundson, R.; Vavra, M.; McClaran, M.P.; Anderson, D.L. (2004): Isotopic analysis of tooth enamel carbonate from modern North American feral horses: implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 203: 299–311. doi:10.1016/ S0031-0182(03)00688-6
  • Julien, M.-A.; Bocherens, H.; Burke, A.; Drucker, D.G.; Patou-Mathis, M.; Krotova, O.; Péan, S. (2012): Were European steppe bison migratory? 18O, 13C and Sr intra-tooth isotopic variations applied to a palaeoe¬thological reconstruction. Quaternary International 271: 106–119. doi:10.1016/j.quaint.2012.06.011
  • Julien, M.-A.; Rivals, F.; Serangeli, J.; Bocherens, H.; Conard, N.J. (2015): A new approach for deciphering between single and multiple accumulation events using intra-tooth isotopic variations: Application to the Middle Pleistocene bone bed of Schöningen 13 II-4. Journal of Human Evolution 89: 114–128. doi:10.1016/j.jhevol.2015.02.012
  • King, C.A.M. (1971): Techniques in geomorphology. London: Arnold.
  • Klein, R.G.; Wolf, C.; Freeman, L.G.; Allwarden, K. (1981): The use of dental crown heights for constructing age profiles of red deer and similar species in archaeological samples. Journal of Archaeological Science 8: 1–31.
  • Klein, R.G.; Cruz-Uribe, K. (1983): The computation of ungulate age (mortality) profiles from dental crown heights. Paleobiology 9: 70–78.
  • Klein, R.G. & Cruz-Uribe, K. (1984): The analysis of animal bones from archaeological sites. University of Chicago Press, Chicago.
  • Koch, P.L.; Fisher, D.C.; Dettman, D. (1989): Oxygen isotope variation in the tusks of extinct proboscideans: a measure of season of death and seasonality. Geology 17: 515–519.
  • Koch, P.L. (2007): Isotopic study of the biology of modern and fossil vertebrates. En Michener, R.; Lajtha, K. (ed.): Stable Isotopes in Ecology and Environtal Science. 2nd ed. Blackwell Publishing, Boston: 99–154.
  • Kohn, M.J. (1996): Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60: 4811–4829.
  • LeCren, E. D. (1947): The determination of the age and growth of the perch (Perca fluviatilis) from the opercular bone. Journal of Animal Ecology, 16: 188–204.
  • Lieberman, D. E. (1994): The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science, 21: 525–539.
  • Lieberman, D. E.; Deacon, T. W.; Meadow, R. H. (1990): Computer image enhancement and Analysis of cementum increments as applied to teeth of Gazella gazelle. Journal of Archaeological Science, 14: 519–533.
  • Lubinski, P.M. (2001): Estimating age and season of death of pronghorn antelope (Antilocapra americana Ord) by means of tooth eruption and wear. International Journal of Osteoarchaeology 11: 218–230. doi:10.1002/oa.536
  • Luz, B.; Kolodny, Y.; Horowitz, M. (1984): Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48: 1689–1693.
  • Mannino, M.A.; Spiro, B.F.; Thomas, K.D. (2003): Sampling shells for seasonality: oxygen isotope analysis on shell carbonates of the inter-tidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. Journal of Archaeological Science 30: 667–679. doi:10.1016/S0305-4403(02)00238-8
  • Mannino, M.A.; Thomas, K.D.; Leng, M.J.; Piperno, M.; Tusa, S.; Tagliacozzo, A. (2007): Marine resources in the Mesolithic and Neolithic at the Grotta dell’Uzzo (Sicily): evidence from isotope analyses of marine shells. Archaeometry 49: 117–133.
  • Mateos Cachorro, A. (2002): Apuntes sobre estacionalidad y subsistencia de los grupos humanos del Cantábrico Occidental en torno al 13000 B.P. Trabajos de Prehistoria, 59 (2): 27–41.
  • Mellars, P.A.; Wilkinson, M.R. (1980): Fish otoliths as evidence of seasonality in prehistoric shell middens: the evidence from Oronsay. Proceedings of the Prehistoric Society 46: 19–44
  • Milner, N. (1999): Pitfalls and problems in analysing and interpreting the seasonality of faunal remains. Archaeological Review from Cambridge. 51–67.
  • Monks, G. G. (1981): Seasonality studies. Advances in Archaeological Method and Theory, vol. 4: 177– 240. New York: Academic Press.
  • Morrison, D.; Whitridge, P. (1997): Estimating the age and sex of caribou from mandibular measurements. Journal of Archaeological Science 24: 1093–1106.
  • Naji, S.; Gourichon, L.; Rendu, W. (2015): La cémentochronologie. En Balasse, M.; Brugal, J.P.; Dauphin, Y.; Geigl, E.M.; Oberlin, C.; Reiche, I. (dir.): Messages d’os: Archéométrie du squelette animale et hu¬main. Collection Sciences Archéologiques-Éditions des archives contemporaines, Paris.
  • O’Connor, T. (2000): The archaeology of animal bones. Sutton Publishing Ltd.
  • Paul A.; Mulitza S.; Pätzold J.; Wolff T. (1999): Simulation of Oxygen Isotopes in a Global Ocean Model. En Fischer G.; Wefer G. (ed.): Use of Proxies in Paleoceanography. Springer, Berlin, Heidelberg.
  • Payne, S. (1973): Kill-off patterns in sheep and goats: the mandibles from Aşvan Kale. Anatolian Studies 23: 281–303. doi:10.2307/3642547
  • Payne, S. (1987): Reference codes for wear stages in the mandibular cheek teeth of sheep and goats. Journal of Archaeological Science 14: 609–614.
  • Pérez Ripoll, M.; Iborra Eres, M. P.; Villaverde Bonilla, V. (2001): Aplicación del estudio de la cementocronología a materiales de los niveles magdalenienses de la Cova de Les Cendres y la Cova del Parpalló: metodología y primeros resultados. Archaeofauna 10: 113–123.
  • Pike-Tay, A.; Valdés, V.C.; de Quirós, F.B. (1999): Seasonal variations of the Middle–Upper Paleolithic transition at El Castillo, Cueva Morın and El Pendo (Cantabria, Spain). Journal of Human Evolution 36: 283–317.
  • Polo-Díaz, A.; Benito-Calvo, A.; Martínez-Moreno, J.; Mora Torcal, R. (2016): Formation processes and stratigraphic integrity of the Middle-to-Upper Palaeolithic sequence at Cova Gran de Santa Linya (Southeastern Prepyrenees of Lleida, Iberian Peninsula). Quaternary International 417: 16–38. https://doi. org/10.1016/j.quaint.2015.10.113
  • Rendu, W. (2010): Hunting behavior and Neanderthal adaptability in the Late Pleistocene site of Pech-de-l’Azé I. Journal of Archaeological Science 37: 1798–1810. doi:10.1016/j.jas.2010.01.037
  • Rick, A. (1975): Bird medullary bone: a seasonal dating technique for faunal analysts. Canadian Archaeological Association, Bulletin 7: 183–190.
  • Rick, A. (1979): Some problems and solutions in zooarchaeological interpretation of bird bones. Paper presented at the 44th annual meeting of the Society for American Archaeology, Vancouver.
  • Rivals, F.; Deniaux, B. (2005): Investigation of human hunting seasonality through dental microwear analysis of two Caprinae in late Pleistocene localities in Southern France. Journal of Archaeological Science 32: 1603–1612. doi:10.1016/j.jas.2005.04.014
  • Rivals, F.; Solounias, N. (2007): Differences in Tooth Microwear of Populations of Caribou (Rangifer tarandus, Ruminantia, Mammalia) and Implications to Ecology, Migration, Glaciations and Dental Evolution. J. Mamm. Evol. 14: 182–192. doi:10.1007/s10914-007-9044-8
  • Rivals, F.; Solounias, N.; Mihlbachler, M.C. (2007): Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quaternary Research 68: 338–346. doi:10.1016/j.yqres.2007.07.012
  • Rivals, F.; Moncel, M.-H.; Patou-Mathis, M. (2009a): Seasonality and intra-site variation of Neanderthal occupations in the Middle Palaeolithic locality of Payre (Ardèche, France) using dental wear analyses. Journal of Archaeological Science 36: 1070–1078. doi:10.1016/j.jas.2008.12.009
  • Rivals, F.; Schulz, E.; Kaiser, T.M. (2009b): A new application of dental wear analyses: estimation of duration of hominid occupations in archaeological localities. Journal of Human Evolution 56: 329–339. doi:10.1016/j.jhevol.2008.11.005
  • Rivals, F.; Semprebon, G.M. (2012): Paleoindian subsistence strategies and late Pleistocene paleoenvironments in the northeastern and southwestern United States: a tooth wear analysis. Journal of Archaeological Science 39: 1608–1617. doi:10.1016/j.jas.2011.12.039
  • Rivals, F.; Prignano, L.; Julien, M.A.; Kuitems, M.; van Kolfschoten, T.; Serangeli, J.; Drucker, D.G.; Boecherens, H.; Conard, N.J. (2014): Investigation of equid paleodiet from Schöningen 13 II-4 through dental wear and isotopic analysies: Archaeological implications. Journal of Human Evolution
  • Rivals, F.; Prignano, L.; Semprebon, G.M.; Lozano, S. (2015): A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear. Scientific Reports 5, 17330
  • Rodríguez-Hidalgo, A.; Rivals, F.; Saladié, P.; Carbonell, E. (2016): Season of bison mortality in TD10.2 bone bed at Gran Dolina site (Atapuerca): Integrating tooth eruption, wear, and microwear methods. Journal of Archaeological Science: Reports 6: 780–789. https://doi.org/10.1016/j.jasrep.2015.11.033
  • Rodríguez-Hidalgo, A.; Saladié, P.; Ollé, A.; Arsuaga, J.L.; Bermúdez de Castro, J.M.; Carbonell, E. (2017): Human predatory behavior and the social implications of communal hunting based on evidence from the TD10.2 bison bone bed at Gran Dolina (Atapuerca, Spain). Journal of Human Evolution 105: 89–122. https://doi.org/10.1016/j.jhevol.2017.01.007
  • Rozanski, K.; Gonfiantini, R. (1990): Isótopos en estudios climatológicos. Boletín del OIEA 4/1990.
  • Saarinen, J.; Karme, A.; Cerling, T.; Uno, K.; Säilä, L.; Kasiki, S.; Ngene, S.; Obari, T.; Mbua, E.; Manthi, F.K.; Fortelius, M. (2015): A new tooth wear–based dietary analysis method for Proboscidea (Mammalia). Journal of Vertebrate Paleontology 35: e918546. doi:10.1080/02724634.2014.918546
  • Saarinen, J.; Lister, A.M. (2016): Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. Journal of Quaternary Science 31: 799–808. doi:10.1002/jqs.2906
  • Sánchez-Hernández, C.; Rivals, F.; Blasco, R.; Rosell, J. (2014): Short, but repeated Neanderthal visits to Teixoneres Cave (MIS 3, Barcelona, Spain): a combined analysis of tooth microwear patterns and seasonality. Journal of Archaeological Science 49: 317–325. doi:10.1016/j.jas.2014.06.002
  • Semprebon, G.M.; Godfrey, L.R.; Solounias, N.; Sutherland, M.R.; Jungers, W.L. (2004): Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution 47: 115–144. doi:10.1016/j.jhe¬vol.2004.06.004
  • Sistiaga, A.; Berna, F.; Laursen, R.; Goldberg, P. (2014a). Steroidal biomarker analysis of a 14,000 years old putative human coprolite from Paisley Cave, Oregon. Journal of Archaeological Science 41: 813– 817. doi:10.1016/j.jas.2013.10.016
  • Sistiaga, A.; Mallol, C.; Galván, B.; Summons, R.E. (2014b). The Neanderthal meal: a new perspective using faecal biomarkers. PLOS ONE 9: e101045.
  • Solounias, N.; Semprebon, G. (2002): Advances in the Reconstruction of Ungulate Ecomorphology with Application to Early Fossil Equids. American Museum Novitates 1–49. doi:10.1206/0003-0082(2002)3 66<0001:AITROU>2.0.CO;2
  • Sosdian, S.; Gentry, D.K.; Lear, C.H.; Grossman, E.L.; Hicks, D.; Rosenthal, Y. (2006): Strontium to calcium ratios in the marine gastropod Conus ermineus : Growth rate effects and temperature calibration. Geochemistry, Geophysics, Geosystems 7: Q11023. doi:10.1029/2005GC001233
  • Spagnolo, V.; Marciani, G.; Aureli, D.; Berna, F.; Boscato, P.; Ranaldo, F.; Ronchitelli, A. (2016): Between hearths and volcanic ash: The SU 13 palimpsest of the Oscurusciuto rock shelter (Ginosa – Southern Italy): Analytical and interpretative questions. Quaternary International 417: 105–121. https://doi.or-g/10.1016/j.quaint.2015.11.046
  • Spinage, C.A. (1971): Geratodontology and horn growth of the impala (Aepyceros melampus). Journal of Zoology 164, 209–225.
  • Spinage, C.A. (1972): Age estimation of zebra. African Journal of Ecology 10: 273–277.
  • Spinage, C.A. (1973): A review of the age determination of mammals by means of teeth, with especial reference to Africa. African Journal of Ecology 11: 165–187.
  • Spinage, C.A. (1976): Age determination of the female Grant’s gazelle. African Journal of Ecology 14: 121–134.
  • Stecher, H.A.; Krantz, D.E.; Lord, C.J.; Luther, G.W.; Bock, K.W. (1996): Profiles of strontium and barium in Mercenaria mercenaria and Spisula solidissima shells. Geochimica et Cosmochimica Acta 60: 3445–3456.
  • Steele, T.E. (2002): Accuracy of age determinations from tooth crown heights: a test using an expanded sample of known age red deer (Cervus elaphus). En Ruscillo, D. (ed.) (2006): Recent advances in ageing and sexing animal bones. Proceedings of the 9th Conference of the International Council of Archaeozoology, Durham, August 2002. Oxbow Books: Oxford: 119-128.
  • Steele, T.E. (2004): Variation in mortality profiles of red deer (Cervus elaphus) in Middle Palaeolithic assemblages from western Europe. International Journal of Osteoarchaeology 14: 307–320. doi:10.1002/ oa.763
  • Steele, T.E. (2005): Comparing methods for analysing mortality profiles in zooarchaeological and palaeontological samples. International Journal of Osteoarchaeology 15: 404–420. doi:10.1002/oa.795
  • Stuart-Williams, H.L.Q.; Schwarcz, H.P. (1997): Oxygen isotopic determination of climatic variation using phosphate from beaver bone, tooth enamel, and dentine. Geochimica et Cosmochimica Acta 61: 2539– 2550.
  • Takesue, R.K.; van Geen, A. (2004): Mg/Ca, Sr/Ca, and stable isotopes in modern and Holocene Protothaca staminea shells from a northern California coastal upwelling region. Geochimica et Cosmochimica Acta 68: 3845–3861. doi:10.1016/j.gca.2004.03.021
  • Talbot, L.M.; Talbot, M.H. (1963): The wildebeest in Western Masailand, East Africa. Wildlife Monographs 12: 3-88.
  • Wang, T.; Surge, D.; Mithen, S. (2012): Seasonal temperature variability of the Neoglacial (3300–2500BP) and Roman Warm Period (2500–1600BP) reconstructed from oxygen isotope ratios of limpet shells (Patella vulgata), Northwest Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology 317–318: 104–113. doi:10.1016/j.palaeo.2011.12.016
  • Xafis, A.; Nagel, D.; Bastl, K. (2017): Which tooth to sample? A methodological study of the utility of premolar/non-carnassial teeth in the microwear analysis of mammals. Palaeogeography, Palaeoclimatology, Palaeoecology doi:10.1016/j.palaeo.2017.09.003
  • Yravedra J. (2006): Tafonomía aplicada a la zooarqueología. UNED Ediciones, Madrid.
  • Yravedra, J.; Domínguez-Rodrigo, M.; Santonja, M.; Rubio-Jara, S.; Panera, J.; Pérez-González, A.; Uribelarrea, D.; Egeland, C.; Mabulla, A.Z.P.; Baquedano, E. (2016a): The larger mammal palimpsest from TK (Thiongo Korongo), Bed II, Olduvai Gorge, Tanzania. Quaternary International 417: 3–15. https:// doi.org/10.1016/j.quaint.2015.04.013
  • Yravedra, J.; Julien, M.-A.; Alcaraz-Castaño, M.; Estaca-Gómez, V.; Alcolea-González, J.; de Balbín-Behrmann, R.; Lécuyer, C.; Marcel, C.H.; Burke, A. (2016b): Not so deserted… paleoecology and human subsistence in Central Iberia (Guadalajara, Spain) around the Last Glacial Maximum. Quaternary Science Review 140: 21–38.