Graphs r-polar spherical realization.
- Montenegro, Eduardo 1
- Cabrera, Eduardo 1
- González, José 1
- Nettle, Alejandro 1
- Robres, Ramón 1
-
1
Universidad de Playa Ancha de Ciencias de la Educación
info
Universidad de Playa Ancha de Ciencias de la Educación
Valparaíso, Chile
ISSN: 0716-0917
Año de publicación: 2010
Volumen: 29
Número: 1
Páginas: 31-39
Tipo: Artículo
Otras publicaciones en: Proyecciones: Journal of Mathematics
Resumen
The graph to considered will be in general simple and finite, graphs with a nonempty set of edges. For a graph G, V(G) denote the set of vertices and E(G) denote the set of edges. Now, let Pr = (0, 0, 0, r) ? R4, r ? R+ . The r-polar sphere, denoted by SPr , is defined by {x ? R4/ ||x|| = 1 ? x ? Pr }: The primary target of this work is to present the concept of r-Polar Spherical Realization of a graph. That idea is the following one: If G is a graph and h : V (G) ? SPr is a injective function, them the r-Polar Spherical Realization of G, denoted by G*, it is a pair (V (G*), E(G*)) so that V (G*) = {h(v)/v ? V (G)} and E(G*) = {arc(h(u)h(v))/uv ? E(G)}, in where arc(h(u)h(v)) it is the arc of curve contained in the intersection of the plane defined by the points h(u), h(v), Pr and the r-polar sphere.
Referencias bibliográficas
- Citas Barnsley, M. Fractal Everywhere, Academic Press, (1988).
- Brondsted, A. An Introduction to Convex Polytopes, Springer Verlag, New York, Heidelberg, Berlin, (1983).
- Chartrand G., Lesniaik, L. Graphs and Digraphs, Wadsworth and Brooks/Cole Advanced Books and Software Pacific Grove, C. A., (1996).
- Chartrand G., Oellermann, O. Applied and Algorithmic Graph Theory, McGraw-Hill., Inc., (1993).
- Coxeter, H. Regular Polytopes, Third Edition, Dover Publication, Inc, (1973).
- Devaney, R. Introduction to Chaotic Dynamical Systems, 2nd edition, AddisonWesley, (1989).
- Holmgren, R., A First Course in Discrete Dynamical Systems, Springer-Verlag, (1994).
- Kolmogorov, A., Fomin, S.V. Introductory Real Analysis, Dover Publications, INC., New York, (1975).
- Montenegro, E., Salazar R. A result about the incidents edges in the graphs Mk, Discrete Mathematics, 122, pp. 277-280, (1993).
- Montenegro, E., Powers, D., Ruíz, S., Salazar, R. Spectra of related graphs and Self Reproducing Polyhedra, Proyecciones, v 11, pp. 01- 09, (1992).
- Montenegro, E., Cabrera, E. Attractors Points in the Autosubstitution, Proyecciones, v 20, N 2, pp. 193-204, (2001).
- Prisner, E. Graph Dynamics, version 213, Universitat Hamburg, Hamburg, F.R. Germany, (1994).
- Rockafellar, R. Convex Analysis, Princeton University Press, (1970).