La producción de interferón gamma por linfoticos t cd8+ cmv específicos confiere protección frente a la reactivación de citomegalovirus en el paciente crítico

  1. GONZÁLEZ GASCA, FRANCISCO JAVIER
Dirigida por:
  1. Sara Cantisán Director/a
  2. Juan José Castón Osorio Director/a

Universidad de defensa: Universidad de Córdoba (ESP)

Fecha de defensa: 11 de septiembre de 2018

Tribunal:
  1. José María Aguado García Presidente
  2. Antonio Rivero Román Secretario/a
  3. Patricia Muñoz Vocal

Tipo: Tesis

Teseo: 560393 DIALNET

Resumen

1. Motivación de la tesis El citomegalovirus (CMV) es un virus herpes beta tipo 5 con una elevada seroprevalencia en la población general. La mayoría de las primoinfecciones ocurren en la infancia y son asintomáticas, pasando, a continuación, a una fase latente, definida como persistencia del genoma viral en ausencia de producción de viriones infectantes en individuos inmunocompetentes. La fase latente puede dar paso a una reactivación en presencia de estímulos como pueden ser la inmunosupresión o una respuesta inflamatoria intensa. Mediante el empleo de técnicas moleculares como la reacción en cadena de la polimerasa (PCR) se ha podido implicar al CMV como patógeno inesperado incluso en el paciente inmunocompetetente crítico, pudiendo empeorar su pronóstico. En el paciente inmunodeprimido, especialmente en el trasplantado, se ha intentado predecir su reactivación, siendo prometedor el papel de la inmunidad del huésped mediada por linfocitos T CD8+, tanto directamente por su fenotipo como indirectamente midiendo el interferón específico frente a CMV mediante QuantiFERON-CMV®. 2. Contenido de la investigación Hipótesis y Objetivos: Evaluar la utilidad de la determinación de la producción de interferón gamma (IFNγ) por los linfocitos T CD8+ específicos de citomegalovirus (CMV) para determinar el riesgo de reactivación de CMV en el paciente crítico previamente no inmunocomprometido. Material y Método: Cohorte prospectiva reclutada en dos centros hospitalarios constituida por pacientes críticos no inmunocomprometidos seropositivos para CMV que ingresaron en Unidad de Cuidados Intensivos (UCI) entre diciembre de 2012 y marzo de 2013. La incidencia de reactivación de CMV se evaluó mediante reacción en cadena de la polimerasa (PCR) en plasma. Se determinó el nivel de secreción de IFNγ al ingreso en UCI mediante QuantiFERON-CMV (QF-CMV). Se analizaron mediante regresión de Cox los factores asociados a reactivación viral. Resultados: Se incluyeron 53 pacientes, de los cuales 13 (24,5 %) presentaron reactivación de CMV. Veintiséis pacientes (49,1 %) fueron QF-CMV-Reactivo. De esos 26 pacientes, 11,5 % (3/26) presentaron reactivación de CMV frente al 37% (10/27) de los QF-CMV-No reactivo (p=0,03). Mediante regresión de Cox, la presencia de QF-CMV-Reactivo al ingreso en UCI se asoció a un menor riesgo de reactivación de CMV (OR 0,09; IC 95% 0,02-0,44; p=0,003). La sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo del QF-CMV fueron, respectivamente, del 77, 57, 37 y 88%. Once de los pacientes (20,7%) fallecieron durante el período de seguimiento. La mortalidad fue mayor en aquellos pacientes con reactivación de CMV (6/13, 46,1% frente a 5/40, 12,5%; p=0,015). 3. Conclusión: La presencia de una respuesta funcional mediada por linfocitos T CD8+ CMV-específicos (QF-CMV-Reactivo) en el paciente crítico no inmunosuprimido al ingreso en UCI le confiere protección frente a la reactivación de CMV. 4. Bibliografía 1. Moore PS, Gao SJ, Dominguez G, Cesarman E, Lungu O, Knowles DM, et al. Primary characterization of a herpesvirus agent associated with Kaposi’s sarcomae. J Virol. 1996;70(1):549-58. 2. Osawa R, Singh N. Cytomegalovirus infection in critically ill patients: a systematic review. Crit Care Lond Engl. 2009;13(3):R68. 3. Cantisán S, Lara R, Montejo M, Redel J, Rodríguez-Benot A, Gutiérrez-Aroca J, et al. Pretransplant interferon-γ secretion by CMV-specific CD8+ T cells informs the risk of CMV replication after transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2013;13(3):738-45. 4. Crough T, Khanna R. Immunobiology of Human Cytomegalovirus: from Bench to Bedside. Clin Microbiol Rev. 2009;22(1):76-98. 5. Gkrania-Klotsas E, Langenberg C, Sharp SJ, Luben R, Khaw K-T, Wareham NJ. Seropositivity and higher immunoglobulin g antibody levels against cytomegalovirus are associated with mortality in the population-based European prospective investigation of Cancer-Norfolk cohort. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;56(10):1421-7. 6. Gámez SS, Ruiz MP, Navarro Marí JM. Infección por citomegalovirus humano. Enfermedades Infecc Microbiol Clínica. 2014;32:15-22. 7. Fernando de Ory Manchón, Juan Carlos Sanz Moreno, Rosario Castañeda López, Rosa Ramírez Fernández, Pilar León Rega, Isabel Pachón del Am. Seroepidemiología frente a citomegalovirus en la Comunidad de Madrid. Rev Esp Salud Pública. 2001;75(1):55-62. 8. Sia IG, Patel R. New strategies for prevention and therapy of cytomegalovirus infection and disease in solid-organ transplant recipients. Clin Microbiol Rev. 2000;13(1):83-121, table of contents. 9. Bennett JE, Dolin R, Blaser MJ. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Churchill Livingstone/Elsevier; 2015. 3904 p. 10. Zuckerman AJ, Banatvala JE, Schoub BD, Griffiths PD, Mortimer P, editores. Principles and Practice of Clinical Virology [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2009 [citado 28 de junio de 2015]. Disponible en: http://doi.wiley.com/10.1002/9780470741405 11. Bataille S, Moal V, Gaudart J, Indreies M, Purgus R, Dussol B, et al. Cytomegalovirus risk factors in renal transplantation with modern immunosuppression. Transpl Infect Dis Off J Transplant Soc. 2010;12(6):480-8. 12. Slobedman B, Mocarski ES. Quantitative analysis of latent human cytomegalovirus. J Virol. 1999;73(6):4806-12. 13. Sinclair J, Sissons P. Latency and reactivation of human cytomegalovirus. J Gen Virol. 2006;87(Pt 7):1763-79. 14. Söderberg C, Larsson S, Bergstedt-Lindqvist S, Möller E. Definition of a subset of human peripheral blood mononuclear cells that are permissive to human cytomegalovirus infection. J Virol. 1993;67(6):3166-75. 15. Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of human cytomegalovirus in peripheral blood mononuclear cells. J Gen Virol. 1991;72 ( Pt 9):2059-64. 16. Schrier RD, Nelson JA, Oldstone MB. Detection of human cytomegalovirus in peripheral blood lymphocytes in a natural infection. Science. 1985;230(4729):1048-51. 17. Mendelson M, Monard S, Sissons P, Sinclair J. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol. 1996;77 ( Pt 12):3099-102. 18. Sénéchal B, Boruchov AM, Reagan JL, Hart DNJ, Young JW. Infection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83. Blood. 2004;103(11):4207-15. 19. Sinzger C, Grefte A, Plachter B, Gouw AS, The TH, Jahn G. Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol. 1995;76 ( Pt 4):741-50. 20. Grefte A, van der Giessen M, van Son W, The TH. Circulating cytomegalovirus (CMV)-infected endothelial cells in patients with an active CMV infection. J Infect Dis. 1993;167(2):270-7. 21. Cheung AKL, Abendroth A, Cunningham AL, Slobedman B. Viral gene expression during the establishment of human cytomegalovirus latent infection in myeloid progenitor cells. Blood. 2006;108(12):3691-9. 22. Kutza AS, Muhl E, Hackstein H, Kirchner H, Bein G. High incidence of active cytomegalovirus infection among septic patients. Clin Infect Dis Off Publ Infect Dis Soc Am. 1998;26(5):1076-82. 23. Mutimer DJ, Shaw J, O’Donnell K, Elias E. Enhanced (cytomegalovirus) viral replication after transplantation for fulminant hepatic failure. Liver Transplant Surg Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 1997;3(5):506-12. 24. Prösch S, Wendt CE, Reinke P, Priemer C, Oppert M, Krüger DH, et al. A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology. 2000;272(2):357-65. 25. Fietze E, Prösch S, Reinke P, Stein J, Döcke WD, Staffa G, et al. Cytomegalovirus infection in transplant recipients. The role of tumor necrosis factor. Transplantation. 1994;58(6):675-80. 26. Prösch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD, et al. Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFalpha is mediated via induction of NF-kappaB. Virology. 1995;208(1):197-206. 27. Stein J, Volk HD, Liebenthal C, Krüger DH, Prösch S. Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol. 1993;74 ( Pt 11):2333-8. 28. Kline JN, Hunninghake GM, He B, Monick MM, Hunninghake GW. Synergistic activation of the human cytomegalovirus major immediate early promoter by prostaglandin E2 and cytokines. Exp Lung Res. 1998;24(1):3-14. 29. Gandhi MK, Khanna R. Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis. 2004;4(12):725-38. 30. Sissons JGP, Carmichael AJ. Clinical aspects and management of cytomegalovirus infection. J Infect. 2002;44(2):78-83. 31. Fowler KB, Boppana SB. Congenital cytomegalovirus (CMV) infection and hearing deficit. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2006;35(2):226-31. 32. Ross SA, Boppana SB. Congenital cytomegalovirus infection: outcome and diagnosis. Semin Pediatr Infect Dis. 2005;16(1):44-9. 33. Kenneson A, Cannon MJ. Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol. 2007;17(4):253-76. 34. Stagno S, Pass RF, Cloud G, Britt WJ, Henderson RE, Walton PD, et al. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA. 1986;256(14):1904-8. 35. Pass RF, Fowler KB, Boppana SB, Britt WJ, Stagno S. Congenital cytomegalovirus infection following first trimester maternal infection: symptoms at birth and outcome. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2006;35(2):216-20. 36. Stagno S, Pass RF, Dworsky ME, Henderson RE, Moore EG, Walton PD, et al. Congenital cytomegalovirus infection: The relative importance of primary and recurrent maternal infection. N Engl J Med. 1982;306(16):945-9. 37. Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA. The outcome of congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med. 1992;326(10):663-7. 38. Malm G, Engman M-L. Congenital cytomegalovirus infections. Semin Fetal Neonatal Med. 2007;12(3):154-9. 39. Steininger C, Puchhammer-Stöckl E, Popow-Kraupp T. Cytomegalovirus disease in the era of highly active antiretroviral therapy (HAART). J Clin Virol Off Publ Pan Am Soc Clin Virol. 2006;37(1):1-9. 40. Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998;338(13):853-60. 41. Salmon-Céron D, Mazeron MC, Chaput S, Boukli N, Senechal B, Houhou N, et al. Plasma cytomegalovirus DNA, pp65 antigenaemia and a low CD4 cell count remain risk factors for cytomegalovirus disease in patients receiving highly active antiretroviral therapy. AIDS Lond Engl. 2000;14(8):1041-9. 42. Sabin CA, Devereux HL, Clewley G, Emery VC, Phillips AN, Loveday C, et al. Cytomegalovirus seropositivity and human immunodeficiency virus type 1 RNA levels in individuals with hemophilia. J Infect Dis. 2000;181(5):1800-3. 43. Webster A, Lee CA, Cook DG, Grundy JE, Emery VC, Kernoff PB, et al. Cytomegalovirus infection and progression towards AIDS in haemophiliacs with human immunodeficiency virus infection. Lancet. 1989;2(8654):63-6. 44. Griffiths PD. CMV as a cofactor enhancing progression of AIDS. J Clin Virol Off Publ Pan Am Soc Clin Virol. 2006;35(4):489-92. 45. Yust I, Fox Z, Burke M, Johnson A, Turner D, Mocroft A, et al. Retinal and extraocular cytomegalovirus end-organ disease in HIV-infected patients in Europe: a EuroSIDA study, 1994-2001. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2004;23(7):550-9. 46. Gallant JE, Moore RD, Richman DD, Keruly J, Chaisson RE. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group. J Infect Dis. 1992;166(6):1223-7. 47. Rubin RH. The pathogenesis and clinical management of cytomegalovirus infection in the organ transplant recipient: the end of the «silo hypothesis». Curr Opin Infect Dis. 2007;20(4):399-407. 48. Limaye AP, Raghu G, Koelle DM, Ferrenberg J, Huang M-L, Boeckh M. High incidence of ganciclovir-resistant cytomegalovirus infection among lung transplant recipients receiving preemptive therapy. J Infect Dis. 2002;185(1):20-7. 49. Dockrell DH, Prada J, Jones MF, Patel R, Badley AD, Harmsen WS, et al. Seroconversion to human herpesvirus 6 following liver transplantation is a marker of cytomegalovirus disease. J Infect Dis. 1997;176(5):1135-40. 50. Best NG, Trull AK, Tan KK, Spiegelhalter DJ, Wreghitt TG, Wallwork J. Blood cyclosporine concentrations and cytomegalovirus infection following heart transplantation. Transplantation. 1995;60(7):689-94. 51. Portela D, Patel R, Larson-Keller JJ, Ilstrup DM, Wiesner RH, Steers JL, et al. OKT3 treatment for allograft rejection is a risk factor for cytomegalovirus disease in liver transplantation. J Infect Dis. 1995;171(4):1014-8. 52. Balthesen M, Messerle M, Reddehase MJ. Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol. 1993;67(9):5360-6. 53. Humar A, Michaels M, AST ID Working Group on Infectious Disease Monitoring. American Society of Transplantation recommendations for screening, monitoring and reporting of infectious complications in immunosuppression trials in recipients of organ transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2006;6(2):262-74. 54. Shi X-L, de Mare-Bredemeijer ELD, Tapirdamaz ö., Hansen BE, van Gent R, van Campenhout MJH, et al. CMV Primary Infection Is Associated With Donor-Specific T Cell Hyporesponsiveness and Fewer Late Acute Rejections After Liver Transplantation: CMV May Promote Liver Transplant Tolerance. Am J Transplant. 2015;15(9):2431-42. 55. Streblow DN, Dumortier J, Moses AV, Orloff SL, Nelson JA. Mechanisms of cytomegalovirus-accelerated vascular disease: induction of paracrine factors that promote angiogenesis and wound healing. Curr Top Microbiol Immunol. 2008;325:397-415. 56. Evans PC, Soin A, Wreghitt TG, Taylor CJ, Wight DG, Alexander GJ. An association between cytomegalovirus infection and chronic rejection after liver transplantation. Transplantation. 2000;69(1):30-5. 57. Sagedal S, Nordal KP, Hartmann A, Sund S, Scott H, Degré M, et al. The impact of cytomegalovirus infection and disease on rejection episodes in renal allograft recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2002;2(9):850-6. 58. Pouria S, State OI, Wong W, Hendry BM. CMV infection is associated with transplant renal artery stenosis. QJM Mon J Assoc Physicians. 1998;91(3):185-9. 59. Audard V, Matignon M, Hemery F, Snanoudj R, Desgranges P, Anglade MC, et al. Risk factors and long-term outcome of transplant renal artery stenosis in adult recipients after treatment by percutaneous transluminal angioplasty. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2006;6(1):95-9. 60. Koskinen PK, Nieminen MS, Krogerus LA, Lemström KB, Mattila SP, Häyry PJ, et al. Cytomegalovirus infection accelerates cardiac allograft vasculopathy: correlation between angiographic and endomyocardial biopsy findings in heart transplant patients. Transpl Int Off J Eur Soc Organ Transplant. 1993;6(6):341-7. 61. McDonald K, Rector TS, Braulin EA, Kubo SH, Olivari MT. Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. Am J Cardiol. 1989;64(5):359-62. 62. Kroshus TJ, Kshettry VR, Savik K, John R, Hertz MI, Bolman RM. Risk factors for the development of bronchiolitis obliterans syndrome after lung transplantation. J Thorac Cardiovasc Surg. 1997;114(2):195-202. 63. Bando K, Paradis IL, Similo S, Konishi H, Komatsu K, Zullo TG, et al. Obliterative bronchiolitis after lung and heart-lung transplantation. An analysis of risk factors and management. J Thorac Cardiovasc Surg. 1995;110(1):4-13; discussion 13-14. 64. Arnold JC, Portmann BC, O’Grady JG, Naoumov NV, Alexander GJ, Williams R. Cytomegalovirus infection persists in the liver graft in the vanishing bile duct syndrome. Hepatol Baltim Md. 1992;16(2):285-92. 65. Hindupur S, Yeung M, Shroff P, Fritz J, Kirmani N. Vanishing bile duct syndrome in a patient with advanced AIDS. HIV Med. 2007;8(1):70-2. 66. Lautenschlager I, Höckerstedt K, Jalanko H, Loginov R, Salmela K, Taskinen E, et al. Persistent cytomegalovirus in liver allografts with chronic rejection. Hepatol Baltim Md. 1997;25(1):190-4. 67. O’Grady JG, Alexander GJ, Sutherland S, Donaldson PT, Harvey F, Portmann B, et al. Cytomegalovirus infection and donor/recipient HLA antigens: interdependent co-factors in pathogenesis of vanishing bile-duct syndrome after liver transplantation. Lancet. 1988;2(8606):302-5. 68. George MJ, Snydman DR, Werner BG, Griffith J, Falagas ME, Dougherty NN, et al. The independent role of cytomegalovirus as a risk factor for invasive fungal disease in orthotopic liver transplant recipients. Boston Center for Liver Transplantation CMVIG-Study Group. Cytogam, MedImmune, Inc. Gaithersburg, Maryland. Am J Med. 1997;103(2):106-13. 69. Broers AE, van Der Holt R, van Esser JW, Gratama JW, Henzen-Logmans S, Kuenen-Boumeester V, et al. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 2000;95(7):2240-5. 70. Castro-Malaspina H, Harris RE, Gajewski J, Ramsay N, Collins R, Dharan B, et al. Unrelated donor marrow transplantation for myelodysplastic syndromes: outcome analysis in 510 transplants facilitated by the National Marrow Donor Program. Blood. 2002;99(6):1943-51. 71. Ljungman P. Risk assessment in haematopoietic stem cell transplantation: viral status. Best Pract Res Clin Haematol. 2007;20(2):209-17. 72. Ljungman P, Brand R, Einsele H, Frassoni F, Niederwieser D, Cordonnier C. Donor CMV serologic status and outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation: an EBMT megafile analysis. Blood. 2003;102(13):4255-60. 73. Kollman C, Howe CW, Anasetti C, Antin JH, Davies SM, Filipovich AH, et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood. 2001;98(7):2043-51. 74. Boeckh M, Nichols WG. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood. 2004;103(6):2003-8. 75. Hebart H, Einsele H. Clinical aspects of CMV infection after stem cell transplantation. Hum Immunol. 2004;65(5):432-6. 76. Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J. Cytomegalovirus in hematopoietic stem cell transplant recipients: Current status, known challenges, and future strategies. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2003;9(9):543-58. 77. Goodrich JM, Mori M, Gleaves CA, Du Mond C, Cays M, Ebeling DF, et al. Early treatment with ganciclovir to prevent cytomegalovirus disease after allogeneic bone marrow transplantation. N Engl J Med. 1991;325(23):1601-7. 78. Schmidt GM, Horak DA, Niland JC, Duncan SR, Forman SJ, Zaia JA. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants; The City of Hope-Stanford-Syntex CMV Study Group. N Engl J Med. 1991;324(15):1005-11. 79. Li CR, Greenberg PD, Gilbert MJ, Goodrich JM, Riddell SR. Recovery of HLA-restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis. Blood. 1994;83(7):1971-9. 80. Nichols WG, Corey L, Gooley T, Davis C, Boeckh M. High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)-seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis. 2002;185(3):273-82. 81. Einsele H, Hebart H, Kauffmann-Schneider C, Sinzger C, Jahn G, Bader P, et al. Risk factors for treatment failures in patients receiving PCR-based preemptive therapy for CMV infection. Bone Marrow Transplant. 2000;25(7):757-63. 82. Boeckh M, Leisenring W, Riddell SR, Bowden RA, Huang M-L, Myerson D, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood. 2003;101(2):407-14. 83. Núñez Bacarreza JJ, Montiel López L, Núñez del Prado Alcoreza JR. Síndrome hemofagocítico asociado a infección viral por citomegalovirus. Med Intensiva. 2011;35(3):189-92. 84. Douglas M Heuman. Cytomegalovirus colitis [Internet]. Medscape. 2017. Disponible en: http://emedicine.medscape.com/article/173151-overview#showall 85. Smieja M, Gnarpe J, Lonn E, Gnarpe H, Olsson G, Yi Q, et al. Multiple infections and subsequent cardiovascular events in the Heart Outcomes Prevention Evaluation (HOPE) Study. Circulation. 2003;107(2):251-7. 86. Boehme KW, Compton T. Innate sensing of viruses by toll-like receptors. J Virol. 2004;78(15):7867-73. 87. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, et al. Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol. 2003;77(8):4588-96. 88. Delale T, Paquin A, Asselin-Paturel C, Dalod M, Brizard G, Bates EEM, et al. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-alpha release and initiation of immune responses in vivo. J Immunol Baltim Md 1950. 2005;175(10):6723-32. 89. Hokeness-Antonelli KL, Crane MJ, Dragoi AM, Chu W-M, Salazar-Mather TP. IFN-alphabeta-mediated inflammatory responses and antiviral defense in liver is TLR9-independent but MyD88-dependent during murine cytomegalovirus infection. J Immunol Baltim Md 1950. 2007;179(9):6176-83. 90. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K, et al. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci U S A. 2004;101(10):3516-21. 91. Juckem LK, Boehme KW, Feire AL, Compton T. Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. J Immunol Baltim Md 1950. 2008;180(7):4965-77. 92. Bukowski JF, Woda BA, Habu S, Okumura K, Welsh RM. Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo. J Immunol Baltim Md 1950. 1983;131(3):1531-8. 93. Polić B, Hengel H, Krmpotić A, Trgovcich J, Pavić I, Luccaronin P, et al. Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J Exp Med. 1998;188(6):1047-54. 94. Bukowski JF, Warner JF, Dennert G, Welsh RM. Adoptive transfer studies demonstrating the antiviral effect of natural killer cells in vivo. J Exp Med. 1985;161(1):40-52. 95. Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR. Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med. 1990;171(5):1469-83. 96. Scalzo AA, Fitzgerald NA, Wallace CR, Gibbons AE, Smart YC, Burton RC, et al. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol Baltim Md 1950. 1992;149(2):581-9. 97. Venema H, van den Berg AP, van Zanten C, van Son WJ, van der Giessen M, The TH. Natural killer cell responses in renal transplant patients with cytomegalovirus infection. J Med Virol. 1994;42(2):188-92. 98. Quinnan GV, Kirmani N, Rook AH, Manischewitz JF, Jackson L, Moreschi G, et al. Cytotoxic t cells in cytomegalovirus infection: HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J Med. 1982;307(1):7-13. 99. Boppana SB, Britt WJ. Antiviral antibody responses and intrauterine transmission after primary maternal cytomegalovirus infection. J Infect Dis. 1995;171(5):1115-21. 100. Jonjić S, Pavić I, Polić B, Crnković I, Lucin P, Koszinowski UH. Antibodies are not essential for the resolution of primary cytomegalovirus infection but limit dissemination of recurrent virus. J Exp Med. 1994;179(5):1713-7. 101. Britt WJ, Vugler L, Butfiloski EJ, Stephens EB. Cell surface expression of human cytomegalovirus (HCMV) gp55-116 (gB): use of HCMV-recombinant vaccinia virus-infected cells in analysis of the human neutralizing antibody response. J Virol. 1990;64(3):1079-85. 102. Marshall GS, Rabalais GP, Stout GG, Waldeyer SL. Antibodies to recombinant-derived glycoprotein B after natural human cytomegalovirus infection correlate with neutralizing activity. J Infect Dis. 1992;165(2):381-4. 103. Rasmussen L, Matkin C, Spaete R, Pachl C, Merigan TC. Antibody response to human cytomegalovirus glycoproteins gB and gH after natural infection in humans. J Infect Dis. 1991;164(5):835-42. 104. Yeager AS, Grumet FC, Hafleigh EB, Arvin AM, Bradley JS, Prober CG. Prevention of transfusion-acquired cytomegalovirus infections in newborn infants. J Pediatr. 1981;98(2):281-7. 105. Filippone EJ, Farber JL. Humoral Immune Response and Allograft Function in Kidney Transplantation. Am J Kidney Dis Off J Natl Kidney Found. agosto de 2015;66(2):337-47. 106. Mutter W, Reddehase MJ, Busch FW, Bühring HJ, Koszinowski UH. Failure in generating hemopoietic stem cells is the primary cause of death from cytomegalovirus disease in the immunocompromised host. J Exp Med. 1988;167(5):1645-58. 107. Reddehase MJ, Weiland F, Münch K, Jonjic S, Lüske A, Koszinowski UH. Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol. 1985;55(2):264-73. 108. Barry AP, Silvestri G, Safrit JT, Sumpter B, Kozyr N, McClure HM, et al. Depletion of CD8+ cells in sooty mangabey monkeys naturally infected with simian immunodeficiency virus reveals limited role for immune control of virus replication in a natural host species. J Immunol Baltim Md 1950. 2007;178(12):8002-12. 109. Jacobson MA, Maecker HT, Orr PL, D’Amico R, Van Natta M, Li X-D, et al. Results of a cytomegalovirus (CMV)-specific CD8+/interferon- gamma+ cytokine flow cytometry assay correlate with clinical evidence of protective immunity in patients with AIDS with CMV retinitis. J Infect Dis. 2004;189(8):1362-73. 110. Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78(5):1373-80. 111. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257(5067):238-41. 112. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):1038-44. 113. Walker S, Fazou C, Crough T, Holdsworth R, Kiely P, Veale M, et al. Ex vivo monitoring of human cytomegalovirus-specific CD8+ T-cell responses using QuantiFERON-CMV. Transpl Infect Dis Off J Transplant Soc. 2007;9(2):165-70. 114. Radha R, Jordan S, Puliyanda D, Bunnapradist S, Petrosyan A, Amet N, et al. Cellular immune responses to cytomegalovirus in renal transplant recipients. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2005;5(1):110-7. 115. Reusser P, Cathomas G, Attenhofer R, Tamm M, Thiel G. Cytomegalovirus (CMV)-specific T cell immunity after renal transplantation mediates protection from CMV disease by limiting the systemic virus load. J Infect Dis. 1999;180(2):247-53. 116. Sester M, Sester U, Gärtner BC, Girndt M, Meyerhans A, Köhler H. Dominance of virus-specific CD8 T cells in human primary cytomegalovirus infection. J Am Soc Nephrol JASN. 2002;13(10):2577-84. 117. Shlobin OA, West EE, Lechtzin N, Miller SM, Borja M, Orens JB, et al. Persistent cytomegalovirus-specific memory responses in the lung allograft and blood following primary infection in lung transplant recipients. J Immunol Baltim Md 1950. 2006;176(4):2625-34. 118. Crough T, Burrows JM, Fazou C, Walker S, Davenport MP, Khanna R. Contemporaneous fluctuations in T cell responses to persistent herpes virus infections. Eur J Immunol. 2005;35(1):139-49. 119. Gillespie GM, Wills MR, Appay V, O’Callaghan C, Murphy M, Smith N, et al. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol. 2000;74(17):8140-50. 120. Khan N, Hislop A, Gudgeon N, Cobbold M, Khanna R, Nayak L, et al. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol Baltim Md 1950. 2004;173(12):7481-9. 121. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med. 2005;202(5):673-85. 122. Elkington R, Walker S, Crough T, Menzies M, Tellam J, Bharadwaj M, et al. Ex vivo profiling of CD8+-T-cell responses to human cytomegalovirus reveals broad and multispecific reactivities in healthy virus carriers. J Virol. 2003;77(9):5226-40. 123. Manley TJ, Luy L, Jones T, Boeckh M, Mutimer H, Riddell SR. Immune evasion proteins of human cytomegalovirus do not prevent a diverse CD8+ cytotoxic T-cell response in natural infection. Blood. 2004;104(4):1075-82. 124. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA, Papagno L, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8(4):379-85. 125. Gamadia LE, Remmerswaal EBM, Weel JF, Bemelman F, van Lier RAW, Ten Berge IJM. Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4+ T cells in protection against CMV disease. Blood. 2003;101(7):2686-92. 126. Day EK, Carmichael AJ, ten Berge IJM, Waller ECP, Sissons JGP, Wills MR. Rapid CD8+ T cell repertoire focusing and selection of high-affinity clones into memory following primary infection with a persistent human virus: human cytomegalovirus. J Immunol Baltim Md 1950. 2007;179(5):3203-13. 127. Price DA, Brenchley JM, Ruff LE, Betts MR, Hill BJ, Roederer M, et al. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J Exp Med. 2005;202(10):1349-61. 128. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol Baltim Md 1950. 2002;169(4):1984-92. 129. Pawelec G, Akbar A, Caruso C, Solana R, Grubeck-Loebenstein B, Wikby A. Human immunosenescence: is it infectious? Immunol Rev. 2005;205:257-68. 130. Akbar AN, Fletcher JM. Memory T cell homeostasis and senescence during aging. Curr Opin Immunol. 2005;17(5):480-5. 131. Crough T, Fazou C, Weiss J, Campbell S, Davenport MP, Bell SC, et al. Symptomatic and Asymptomatic Viral Recrudescence in Solid-Organ Transplant Recipients and Its Relationship with the Antigen-Specific CD8+ T-Cell Response. J Virol. 2007;81(20):11538-42. 132. Dunn HS, Haney DJ, Ghanekar SA, Stepick-Biek P, Lewis DB, Maecker HT. Dynamics of CD4 and CD8 T cell responses to cytomegalovirus in healthy human donors. J Infect Dis. 2002;186(1):15-22. 133. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Löffler J, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99(11):3916-22. 134. Gupta MP, Coombs P, Prockop SE, Hasan AA, Doubrovina E, O’Reilly RJ, et al. Treatment of cytomegalovirus retinitis with cytomegalovirus-specific T-lymphocyte infusion. Ophthalmic Surg Lasers Imaging Retina. 2015;46(1):80-2. 135. Sester U, Gärtner BC, Wilkens H, Schwaab B, Wössner R, Kindermann I, et al. Differences in CMV-specific T-cell levels and long-term susceptibility to CMV infection after kidney, heart and lung transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2005;5(6):1483-9. 136. Sester M, Sester U, Gärtner B, Heine G, Girndt M, Mueller-Lantzsch N, et al. Levels of virus-specific CD4 T cells correlate with cytomegalovirus control and predict virus-induced disease after renal transplantation. Transplantation. 2001;71(9):1287-94. 137. Kemble G, Duke G, Winter R, Spaete R. Defined large-scale alterations of the human cytomegalovirus genome constructed by cotransfection of overlapping cosmids. J Virol. 1996;70(3):2044-8. 138. Hegde NR, Dunn C, Lewinsohn DM, Jarvis MA, Nelson JA, Johnson DC. Endogenous human cytomegalovirus gB is presented efficiently by MHC class II molecules to CD4+ CTL. J Exp Med. 2005;202(8):1109-19. 139. Cantisán Bohórquez S, Navarro Ortega D. Estrategias de monitorización inmunológica para la infección por citomegalovirus. Tratamientos de base inmunológica. Enfermedades Infecc Microbiol Clínica. 2011;29:28-32. 140. Manuel O, Husain S, Kumar D, Zayas C, Mawhorter S, Levi ME, et al. Assessment of cytomegalovirus-specific cell-mediated immunity for the prediction of cytomegalovirus disease in high-risk solid-organ transplant recipients: a multicenter cohort study. Clin Infect Dis Off Publ Infect Dis Soc Am. 2013;56(6):817-24. 141. Al-Omari A, Aljamaan F, Alhazzani W, Salih S, Arabi Y. Cytomegalovirus infection in immunocompetent critically ill adults: literature review. Ann Intensive Care. 2016;6(1):110. 142. Torre-Cisneros J, Aguado JM, Caston JJ, Almenar L, Alonso A, Cantisán S, et al. Management of cytomegalovirus infection in solid organ transplant recipients: SET/GESITRA-SEIMC/REIPI recommendations. Transplant Rev. julio de 2016;30(3):119-43. 143. Hodson EM, Ladhani M, Webster AC, Strippoli GFM, Craig JC. Antiviral medications for preventing cytomegalovirus disease in solid organ transplant recipients. Cochrane Database Syst Rev. 2013;2:CD003774. 144. Cordero Matía E, Len Ó. Esquemas de prevención de la infección por citomegalovirus: terapia anticipada frente a profilaxis universal. Enfermedades Infecc Microbiol Clínica. 2011;29:33-7. 145. Torre-Cisneros J, Arias-Rodríguez M, Aguado JM, Campistol JM. Presente y futuro de la infección por citomegalovirus en el trasplante renal. Nefrología. 2012;(3). 146. Florescu DF, Kalil AC. Cytomegalovirus infections in non-immunocompromised and immunocompromised patients in the intensive care unit. Infect Disord Drug Targets. 2011;11(4):354-64. 147. Heininger A, Haeberle H, Fischer I, Beck R, Riessen R, Rohde F, et al. Cytomegalovirus reactivation and associated outcome of critically ill patients with severe sepsis. Crit Care. 2011;15(2):R77. 148. Limaye AP, Boeckh M. CMV in critically ill patients: pathogen or bystander? Rev Med Virol. noviembre de 2010;20(6):372-9. 149. Díaz A, Zaragoza R, Granada R, Salavert M. Infecciones virales graves en pacientes inmunocompetentes. Med Intensiva. 2011;35(3):179-85. 150. Pène F, Pickkers P, Hotchkiss RS. Is this critically ill patient immunocompromised? Intensive Care Med. 2016;42(6):1051-4. 151. Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862-74. 152. Asehnoune K, Roquilly A, Abraham E. Innate immune dysfunction in trauma patients: from pathophysiology to treatment. Anesthesiology. 2012;117(2):411-6. 153. Mañez R, Kusne S, Linden P, Gonzalez-Pinto I, Bonet H, Kramer D, et al. Temporary withdrawal of immunosuppression for life-threatening infections after liver transplantation. Transplantation. 1994;57(1):149-51. 154. Frantzeskaki FG, Karampi E-S, Kottaridi C, Alepaki M, Routsi C, Tzanela M, et al. Cytomegalovirus reactivation in a general, nonimmunosuppressed intensive care unit population: incidence, risk factors, associations with organ dysfunction, and inflammatory biomarkers. J Crit Care. 2015;30(2):276-81. 155. Chilet M, Aguilar G, Benet I, Belda J, Tormo N, Carbonell JA, et al. Virological and immunological features of active cytomegalovirus infection in nonimmunosuppressed patients in a surgical and trauma intensive care unit. J Med Virol. agosto de 2010;82(8):1384-91. 156. Cook CH, Zhang Y, Sedmak DD, Martin LC, Jewell S, Ferguson RM. Pulmonary cytomegalovirus reactivation causes pathology in immunocompetent mice. Crit Care Med. 2006;34(3):842-9. 157. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300(4):413-22. 158. Hamprecht K, Baumeister A, Beck R, Haeberle H, Heininger A. The lung as a central compartment of active CMV infection. Inflamm Res. 2007;Supplement 2:S242. 159. Ishioka H, Sanui M, Tsutsumi Y, Yanase F, Shiotsuka J. Low prevalence of active cytomegalovirus infection in a cardiovascular intensive care unit. J Intensive Care. 2014;2(1):12. 160. Navarro D. Active cytomegalovirus infection in nonimmunosuppressed patients in the ICU. Chest. 2011;140(1):269-70. 161. Ong DSY, Klein Klouwenberg PMC, Verduyn Lunel FM, Spitoni C, Frencken JF, Dekker HAT, et al. Cytomegalovirus seroprevalence as a risk factor for poor outcome in acute respiratory distress syndrome*. Crit Care Med. 2015;43(2):394-400. 162. Papazian L, Fraisse A, Garbe L, Zandotti C, Thomas P, Saux P, et al. Cytomegalovirus. An unexpected cause of ventilator-associated pneumonia. Anesthesiology. 1996;84(2):280-7. 163. Papazian L, Doddoli C, Chetaille B, Gernez Y, Thirion X, Roch A, et al. A contributive result of open-lung biopsy improves survival in acute respiratory distress syndrome patients. Crit Care Med. 2007;35(3):755-62. 164. Chiche L, Forel J-M, Roch A, Guervilly C, Pauly V, Allardet-Servent J, et al. Active cytomegalovirus infection is common in mechanically ventilated medical intensive care unit patients. Crit Care Med. 2009;37(6):1850-7. 165. Kalil AC, Florescu DF. Is cytomegalovirus reactivation increasing the mortality of patients with severe sepsis? Crit Care. 2011;15(2):1–3. 166. Coisel Y, Bousbia S, Forel J-M, Hraiech S, Lascola B, Roch A, et al. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia. PloS One. 2012;7(12):e51340. 167. Walton AH, Muenzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, et al. Reactivation of multiple viruses in patients with sepsis. PloS One. 2014;9(2):e98819. 168. Cook CH, Yenchar JK, Kraner TO, Davies EA, Ferguson RM. Occult herpes family viruses may increase mortality in critically ill surgical patients. Am J Surg. 1998;176(4):357-60. 169. Jaber S, Chanques G, Borry J, Souche B, Verdier R, Perrigault P-F, et al. Cytomegalovirus infection in critically ill patients: associated factors and consequences. Chest. 2005;127(1):233-41. 170. Cisneros-Herreros JM, Cobo-Reinoso J, Pujol-Rojo M, Rodríguez-Baño J, Salavert-Lletí M. [Guidelines for the diagnosis and treatment of patients with bacteriemia. Guidelines of the Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica]. Enferm Infecc Microbiol Clin. 2007;25(2):111-30. 171. CMV IgG Abbot Architect System. User manual [Internet]. 2008. Disponible en: http://www.ilexmedical.com/files/PDF/CMVIgG.pdf 172. Schnepf N, Scieux C, Resche-Riggon M, Feghoul L, Xhaard A, Gallien S, et al. Fully Automated Quantification of Cytomegalovirus (CMV) in Whole Blood with the New Sensitive Abbott RealTime CMV Assay in the Era of the CMV International Standard. J Clin Microbiol. 2013;51(7):2096-102. 173. WHO Expert Committee on Biological Standardization. Collaborative study to evaluate the proposed 1st WHO International Standard for human cytomegalovirus (HCMV) for nucleic acid amplification (NAT)-based assays. WHO/BS/10.2138 [Internet]. World Health Organization; 2010. Disponible en: http://www.who.int/biologicals/expert_committee/BS_2138_HCMV_ECBS_Report.pdf 174. Quiagen. QuantiFERON-CMV ELISA Package Insert [Internet]. 2015. Disponible en: http://www.quantiferon.com/irm/content/PI/CMV/2PK/US.pdf 175. Giulieri S, Manuel O. QuantiFERON®-CMV assay for the assessment of cytomegalovirus cell-mediated immunity. Expert Rev Mol Diagn. 2011;11(1):17-25. 176. Mattes FM, Vargas A, Kopycinski J, Hainsworth EG, Sweny P, Nebbia G, et al. Functional impairment of cytomegalovirus specific CD8 T cells predicts high-level replication after renal transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2008;8(5):990-9. 177. Tey S-K, Kennedy GA, Cromer D, Davenport MP, Walker S, Jones LI, et al. Clinical assessment of anti-viral CD8+ T cell immune monitoring using QuantiFERON-CMV® assay to identify high risk allogeneic hematopoietic stem cell transplant patients with CMV infection complications. PloS One. 2013;8(10):e74744. 178. von Muller L, Klemm A, Durmus N, Weiss M, Suger-Wiedeck H, Schneider M, et al. Cellular immunity and active human cytomegalovirus infection in patients with septic shock. J Infect Dis. 2007;196(9):1288-95. 179. Chiche L, Forel J-M, Thomas G, Farnarier C, Cognet C, Guervilly C, et al. Interferon-γ production by natural killer cells and cytomegalovirus in critically ill patients. Crit Care Med. 2012;40(12):3162-9. 180. Castón JJ, Cantisán S, González-Gasca F, Páez-Vega A, Abdel-Hadi H, Illescas S, et al. Interferon-γ production by CMV-specific CD8+ T lymphocytes provides protection against cytomegalovirus reactivation in critically ill patients. Intensive Care Med. 2016;42(1):46-53.