Análisis de la implementación software de un conformador de señales ultrasónicas para tiempo real

  1. D. Romero-Laorden 1
  2. J. Villazón-Terrazas 1
  3. M. Santos Peñas 2
  4. M.A. García-Izquierdo 3
  5. O. Martínez-Graullera 1
  1. 1 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  3. 3 UPM
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2016

Volumen: 13

Número: 4

Páginas: 462-471

Tipo: Artículo

DOI: 10.1016/J.RIAI.2016.05.006 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Este trabajo analiza la implementación software en un sistema de imagen ultrasónica del Total Focusing Method para la compensación dinámica en tiempo real de los tiempos de vuelo para emisión y recepción de todos los puntos de la imagen. Para ello, haciendo uso de técnicas GPGPU, se analizan dos diferentes alternativas de implementación, mostrando como una planificación adecuada de acceso a los datos permite mejorar los tiempos de ejecución del algoritmo.

Referencias bibliográficas

  • Birk, M., et al., 2011. Acceleration of image reconstruction in 3D ultrasound computer tomography: An evaluation of CPU, GPU and FPGA computing. In: Conference on Design and Architectures for Signal and Image Processing (DASIP). Tampere, pp. 1–8.
  • Camacho, et al., 2007. A strict-time distributed architecture for digital beamforming of ultrasound signals. In: Intelligent Signal Processing, 2007. WISP 2007. IEEE International Symposium on. pp. 1–6.
  • Camacho, J., 2010. Imagen ultrasónica por coherencia de fase. Ph.D. thesis, Facultad de Ciencias Físicas.
  • FFTW, 2015. Library fast fft.
  • Hansen, J. M., et al., 2011. An object-oriented multi-threaded software beamformation toolbox. In: D’hooge, J., Doyley, M. M. (Eds.), SPIE Medical Imaging: Ultrasonic Imaging, Tomography, and Therapy. pp. 79680Y– 79680Y–9.
  • Holmes, C., Bruce W. Drinkwater, Wilcox, P. D., Dec. 2005. Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT & E International 38 (8), 701–711.
  • Holmes, C., Drinkwater, B. W., Wilcox, P. D., nov. 2008. Advanced postprocessing for scanned ultrasonic arrays: application to defect detection and classification in non-destructive evaluation. Ultrasonics 48 (6-7), 636–42.
  • Hunter, A. J., Drinkwater, B. W., Wilcox, P. D., nov. 2008. The wavenumber algorithm for full-matrix imaging using an ultrasonic array. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 55 (11), 2450–62.
  • Jensen, J., Holm, O., Jerisen, L., Bendsen, H., Nikolov, S., Tomov, B., Munk, P., Hansen, M., Salomonsen, K., Hansen, J., Gormsen, K., Pedersen, H., Gammelmark, K., May 2005. Ultrasound research scanner for real-time synthetic aperture data acquisition. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 52 (5), 881–891.
  • Kortbek, J.,, et al., 2007. Effective and versatile software beamformation toolbox Jacob. In: Emelianov, S. Y., McAleavey, S. A. (Eds.), Medical Imaging 2007: Ultrasonic Imaging and Signal Processing.
  • M2M, 2015. Gekko: Advanced phased-array ut.
  • Martín-Arguedas, C. J., 2010. Tecnicas de apertura sintética para la generación de imagen ultrasónica. Ph.D. thesis, Universidad de Alcalá.
  • Nikolov, S. I., 2001. Synthetic aperture tissue and flow ultrasound imaging. Ph.D. thesis, Technical University of Denmark.
  • Nilsen, C.-I. C., Hafizovic, I., Apr. 2009. Digital beamforming using a GPU. In: IEEE International Conference on Acoustics, Speech and Signal Processing. Ieee, pp. 609–612.
  • NVIDIA, 2014. CUDA C Programming Guide 6.0. No. February 2014.
  • Oppenheim, A. V., et al., 1989. Discrete-Time Signal Processing. Vol. 23. Prentice-Hall, Upper Saddle River, New Jersey.
  • Parrilla, M., 2004. Conformación de haces ultrasónicos mediante muestreo selectivo con codificación delta. Ph.D. thesis, UPM.
  • Romero-Laorden, D., et al., 2009. Using GPUs for beamforming acceleration on SAFT imaging. In: IEEE International Ultrasonics Symposium. IEEE, Rome, Italy, pp. 1334–1337.
  • Romero-Laorden, D., et al., 2011. Paralelización de los procesos de conformación de haz para la implementación del Total Focusing Method. In: 12 Congreso Español de END. Valencia.
  • Romero-Laorden, D., et al., Apr. 2012. Paralelización de los procesos de conformación de haz para imagen ultrasónica con técnicas GPGPU. RIAI 9 (2), 144–151.
  • Rougeron, G., et al., 2013. Implementation of a GPU Accelerated Total Focusing Reconstruction Method within CIVA Software. 40th Annual Review of Progress in Quantitative Nondestructive Evaluation 1581 (1), 1983–1990.
  • Siritan, T., et al., 2013. Beamforming Complexity Reduction Methods for LowCost FPGA-based Implementation. In: Biomedical Engineering International Conference (BMEiCON-2013). pp. 2–5.
  • So, H. K. H., Chen, J., Yiu, B. Y. S., Yu, A. C. H., 2011. Medical Ultrasound Imaging: To GPU or not to GPU. IEEE Micro 31 (5), 54–65.
  • Sutcliffe, M., et al., 2012. Real-time full matrix capture for ultrasonic nondestructive testing with acceleration of post-processing through graphic hardware. NDT & E International 51, 16–23.
  • Szabo, T. L., 2004. Diagnostic Ultrasound Imaging. Elsevier.
  • Wall, K., Lockwood, G. R., 2005. Modern Implementation of a Realtime 3D Beamformer and Scan Converter System. In: IEEE International Ultrasonics Symposium. Vol. 00. pp. 1400–1403.
  • Wang, L., et al., May 2011. Real-Time Scan Conversion for Ultrasound Imaging Based on CUDA with Direct3D Display. In: Conference on Bioinformatics and Biomedical Engineering (iCBBE). Ieee, pp. 1–4.
  • Zhang, F., et al., 2002. Parallelization and Performance of 3D Ultrasound Imaging Beamforming Algorithms on Modern Clusters. In: Proceedings of the 16th international conference on Supercomputing. pp. 294–304.