Cortical surface area variations within the dorsolateral prefrontal cortex are better predictors of future cognitive performance than fl uid ability and working memory

  1. Francisco J. Román 1
  2. Susanne M. Jaeggi 2
  3. Kenia Martínez 1
  4. Jesús Privado 3
  5. Lindsay B. Lewis 4
  6. Chi-Hua Chen 2
  7. Sergio Escorial 3
  8. William S. Kremen 2
  9. Sherif Karama 4
  10. Roberto Colom 1
  1. 1 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

  2. 2 University of California System
    info

    University of California System

    Oakland, Estados Unidos

    ROR https://ror.org/00pjdza24

  3. 3 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  4. 4 McGill University, Montreal
Revista:
Psicothema

ISSN: 0214-9915 1886-144X

Año de publicación: 2019

Volumen: 31

Número: 3

Páginas: 229-238

Tipo: Artículo

Otras publicaciones en: Psicothema

Resumen

Antecedentes: ¿Predicen las variables cognitivas y biológicas el futuro desempeño cognitivo? Método: en dos grupos independientes de participantes se miden variables cognitivas (inteligencia fluida y cristalizada, memoria operativa y control atencional) y biológicas (grosor y superficie cortical) en dos ocasiones separadas por seis meses, para predecir el desempeño en la tarea n-back valorado doce y dieciocho meses después. Se completan tres etapas: descubrimiento, validación y generalización. En la de descubrimiento se valoran en un grupo de individuos las variables cognitivas/biológicas y el desempeño a predecir. En la de validación, se relacionan las mismas variables con una versión paralela de la n-back completada meses después. En la de generalización, los resultados de la validación se replican en un grupo independiente de individuos. Resultados: las variaciones de superficie cortical en la corteza dorsolateral prefrontal derecha predicen el desempeño cognitivo en los dos grupos independientes de individuos, mientras que las variables cognitivas no contribuyen a la predicción del desempeño futuro. Conclusiones: las diferencias individuales en determinadas variables biológicas predicen el desempeño cognitivo mejor que las variables cognitivas que correlacionan concurrentemente con ese desempeño.

Información de financiación

This project was supported by PSI2017-82218-P (Ministerio de Economía, Industria y Competitividad, Spain).

Referencias bibliográficas

  • Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J., (2014). Architecture of fl uid intelligence and working memory revealed by lesion mapping. Brain Structure & Function, 219, 485-494. doi.org/10.1007/s00429-013-0512-z
  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17, 85-100. doi.org/10.1037/0882-7974.17.1.85
  • Chen, C. H., Fiecas, M., Gutiérrez, E. D., Panizzon, M. S., Eyler, L. T., Vuoksimaa, E., ... & Neale, M. C. (2013). Genetic topography of brain morphology. Proceedings of the National Academy of Sciences, 110, 17089-17094. doi.org/10.1073/pnas.1308091110
  • Chen, C. H., Gutiérrez, E. D., Thompson, W., Panizzon, M. S., Jernigan, T. L., Eyler, L. T., ... & Lyons, M. J. (2012). Hierarchical genetic organization of human cortical surface area. Science, 335, 1634-1636. doi.org/10.1126/science
  • Choi, Y. Y., et al. (2008). Multiple bases of human intelligence revealed by cortical thickness and neural activation. The Journal of Neuroscience, 28(41), 10323-10329. doi.org/10.1523/JNEUROSCI.3259-08.2008
  • Colom, R., Martínez, K., Burgaleta, M., Román, F. J., García-García, D., Gunter, J. L., ... & Thompson, P. M. (2016a). Gray matter volumetric changes with a challenging adaptive cognitive training program based on the dual n-back task. Personality and Individual Differences, 98, 127-132. doi.org/10.1016/j.paid.2016.03.087
  • Colom, R., Román, F. J., Abad, F. J., Shih, P. C., Privado, J., Froufe, M., ... & Karama, S. (2013). Adaptive n-back training does not improve fluid intelligence at the construct level: Gains on individual tests suggest that training may enhance visuospatial processing. Intelligence, 41, 712-727. doi.org/10.1016/j.intell.2013.09.002
  • Colom, R., Hua, X., Martínez, K., Burgaleta, M., Román, F. J., Gunter, J. L., Carmona, S., Jaeggi, S. M., & Thompson, P. M. (2016b). Brain structural changes following adaptive cognitive training assessed by Tensor-Based Morphometry. Neuropsychologia, 91, 77-85. doi.org/10.1016/j.neuropsychologia.2016.07.034
  • Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475-483.
  • Escorial, S., Román, F. J., Martínez, K., Burgaleta, M., Karama, S., & Colom, R. (2015). Sex differences in neocortical structure and cognitive performance: A surface-based morphometry study. Neuroimage, 104, 355-365. doi.org/10.1016/j.neuroimage.2014.09.035
  • Gabrieli, J. D., Ghosh, S. S., & Whitfi eld-Gabrieli, S. (2015). Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron, 85, 11-26. doi.org/10.1016/j.neuron.2014.10.047
  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105, 6829-6833. doi.org/10.1073/pnas.0801268105
  • Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory, 18, 394-412. doi.org/10.1080/09658211003702171
  • Martínez, K., Burgaleta, M., Román, F. J., Escorial, S., Shih, P. C., Quiroga, M. Á., & Colom, R. (2011). Can fl uid intelligence be reduced to ‘simple’ short-term storage? Intelligence, 39, 473-480. doi.org/10.1016/j.intell.2011.09.001
  • Ponsoda, V., Martínez, K., Pineda-Pardo, J. A., Abad, F. J., Olea, J., … & Colom, R., (2017). Structural brain connectivity and cognitive ability differences: A multivariate distance matrix regression analysis. Human Brain Mapping, 38, 803-816.doi.org/10.1002/hbm.23419
  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97-113. doi.org/10.1016/0028-3932(71)90067-4
  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46-59. doi.org/10.1002/hbm.20131
  • Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12, 174-187. doi.org/10.1162/089892900561814
  • Román, F. J., Abad, F. J., Escorial, S., Burgaleta, M., Martínez, K., ÁlvarezLinera, J., ... & Colom, R. (2014). Reversed hierarchy in the brain for general and specifi c cognitive abilities: A morphometric analysis. Human Brain Mapping, 35, 3805-3818. doi.org/10.1002/hbm.22438
  • Román, F. J., García-Rubio, M. J., Privado, J., Kessel, D., López-Martín, S., Martínez, K., ... & Colom, R. (2015). Adaptive working memory training reveals a negligible effect of emotional stimuli over cognitive processing. Personality and Individual Differences, 74, 165-170. doi.org/10.1016/j.paid.2014.10.014.doi.org/10.1016/j.paid.2014.10.014
  • Román, F. J., Iturria-Medina, Y., Martínez, K., Karama, S., Burgaleta, M., Evans, A. C., ... & Colom, R. (2017). Enhanced structural connectivity within a brain sub-network supporting working memory and engagement processes after cognitive training. Neurobiology of Learning and Memory, 141, 33-43. doi.org/10.1016/j.nlm.2017.03.010
  • Román, F. J., Lewis, L. B., Chen, C. H., Karama, S., Burgaleta, M., Martínez, K., ... & Colom, R. (2016). Gray matter responsiveness to adaptive working memory training: A surface-based morphometry study. Brain Structure and Function, 221, 4369-4382. doi.org/10.1007/s00429-015-1168-7
  • Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience & Biobehavioral Reviews, 39, 34-50. doi.org/10.1016/j.neubiorev.2013.12.004
  • Ullman, H., Almeida, R., & Klingberg, T. (2014). Structural maturation and brain activity predict future working memory capacity during childhood development. The Journal of Neuroscience, 34, 1592-1598. doi.org/10.1523/JNEUROSCI.0842-13.2014
  • Vuoksimaa, E., Panizzon, M. S., Chen, C. H., Fiecas, M., Eyler, L. T., Fennema-Notestine, C., ... & Lyons, M. J. (2014). The genetic association between neocortical volume and general cognitive ability is driven by global surface area rather than thickness. Cerebral Cortex, bhu018. doi.org/10.1093/cercor/bhu018
  • Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science, 12, 1100-1122. doi.org/10.1177/1745691617693393
  • World Medical Association (2008). Declaration of Helsinki Ethical principles for medical research involving human subjects. 59th WMA General Assembly, Seoul, Korea.