Redes neuronales en clasificación

  1. Sánchez Pastor, María Sagrario
Supervised by:
  1. Luis Antonio Sarabia Peinador Director

Defence university: Universidad de Valladolid

Year of defence: 1997

Committee:
  1. Miguel Martín Díaz Chair
  2. Santiago Pérez-Cacho García Secretary
  3. Jesús María Sanz Serna Committee member
  4. Roberto Todeschini Committee member
  5. Juan López Coronado Committee member

Type: Thesis

Teseo: 61192 DIALNET

Abstract

EL CALCULO NEURONAL ES UNA ALTERNATIVA PARA PROBLEMAS DE CLASIFICACION MULTIVARIANTE SI NO SE DESEA RECURRIR A MODELOS DE TIPO PROBABILISTICO Y/O FUNCIONAL BASADOS EN INFORMACION APRIORISTICA SOBRE LOS DATOS, EN ESTE TIPO DE PROBLEMAS, UNA RED HA DE SER ENTRENADA PARA MINIMIZAR FRECUENCIAS (FUNCION RESPUESTA DISCRETA) Y NO ES ADECUADA LA REGLA DE PROPAGACION HACIA ATRAS PARA VINCULAR LAS MODIFICACIONES DE LOS PESOS DE LA RED A LAS MODIFICACIONES DE LAS FRECUENCIAS DE ERROR EN CLASIFICACION OBTENIDAS AL PROGRESAR EL APRENDIZAJE. DADA UNA RED MULTINIVEL SIEMPRE HACIA ADELANTE (MLF), SE PROPONE UN MECANISMO DE APRENDIZAJE BASADO EN LA EVOLUCION ESTOCASTICA DE LOS PESOS, COMO ALTERNATIVA AL METODO MAS USADO BASADO EN EL GRADIENTE DESCENDENTE PARA PROPAGAR LOS ERRORES HACIA ATRAS (BACKPROPAGATION). LA RED CON APRENDIZAJE ESTOCASTICO SE EVALUA CON PROBLEMAS-TIPO COMPLEJOS DE CLASIFICACION, TANTO REALES COMO SIMULADOS, INCIDIENDO ESPECIALMENTE EN SU COMPORTAMIENTO COMO TEST DE HIPOTESIS NO PARAMETRICO.