Relaciones binarias borrosas y regiones económicas. Aplicación a España
- Rivas Pérez, Juan Antonio
- Julius Heinrich Grafe Arias Directeur/trice
Université de défendre: Universidad del País Vasco - Euskal Herriko Unibertsitatea
Année de défendre: 1989
- Roberto Escuder Vallés President
- Jaime Del Castillo Hermosa Secrétaire
- Federico Valenciano Llovera Rapporteur
- Josefina García Aguado Rapporteur
- Emilio Costa Reparaz Rapporteur
Type: Thèses
Résumé
ESTA MEMORIA, SE ESTRUCTURA EN CUATRO GRANDES APARTADOS, CLARAMENTE DIFERENCIADOS, EN PRIMER LUGAR, SE ABORDA DE UNA MANERA NO EXHAUSTIVA, LA SITUACION EN LA CUAL SE ENCUENTRA LA LOGICA BORROSA, BASE DE LAS MATEMATICAS BORROSAS, Y COMO HA SIDO EL PROCESO SEGUIDO POR LA LOGICA PARA LLEGAR A ESTA SITUACION. PARA ELLO, SE REALIZA PREVIAMENTE UN BREVE REPASO DE LA LOGICA CLASICA, SUBRAYANDO SUS FUNDAMENTOS ASI COMO LAS PRINCIPALES CONTROVERSIAS QUE HA ORIGINADO A LO LARGO DE LA HISTORIA. EN SEGUNDO LUGAR, SE ANALIZA LA BASE TEORICA, EL FORMALISMO MATEMATICO EN EL CUAL SE FUNDAMENTA ESTE TRABAJO PRESENTANDO LOS CONCEPTOS CLAVE DE LA TEORIA DE LOS SUBCONJUNTOS BORROSOS Y PONIENDO ESPECIAL ENFASIS EN EL TEMA DE LAS RELACIONES BINARIAS ENTRE SUBCONJUNTOS BORROSOS SOBRE TODO EN LAS RELACIONES DE SIMILITUD Y DISIMILITUD QUE UTILIZAREMOS PARA ANALIZAR LAS DESIGUALDADES REGIONALES. EN TERCER LUGAR, DESARROLLAMOS EL MODELO BORROSO DE DESIGUALDADES REGIONALES, PARA PASAR A CONCRETAR LA APLICACION DEL MODELO A UNA DETERMINADA REALIDAD COMO ES EL DE LAS REGIONES ECONOMICAS ESPAÑOLAS, INTENTANDO ESTABLECER UNA TIPOLOGIA DE DICHAS REGIONES. A LA LUZ DE ESTAS CARACTERIZACIONES, INTENTAMOS ESTABLECER UN MAPA DE LAS REGIONES ECONOMICAS ESPAÑOLAS DE NIVEL I SEGUN LA NOMENCLATURA DE LAS N.U.T.S. POR ULTIMO, ESTABLECEMOS A MODO DE SINTESIS LAS CONCLUSIONES QUE PODEMOS OBTENER DE NUESTRO ESTUDIO, TANTO DESDE EL PUNTO DE VISTA TEORICO COMO PRACTICO.