Detección de biotoxinas en moluscos de venta al consumidor en la Comunidad de Madrid
- Díaz-Alejo Guerrero, Héctor M. 1
- Martínez Esteban, Rocío Paloma 2
- Martínez-Alesón García, Paloma 1
- García Balboa, Camino
- Costas Costas, Eduardo
- López Rodas, Victoria
- 1 Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (España).
- 2 Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (España). Servicio Madrileño de Salud (SERMAS)
ISSN: 2659-9716
Datum der Publikation: 2020
Ausgabe: 3
Nummer: 1
Seiten: 1-7
Art: Artikel
Andere Publikationen in: Revista Madrileña de Salud Pública: REMASP
Zusammenfassung
The presence of biotoxins in shellfish is well known and widely monitored. In Spain, those two more detected in the last years have been saxitoxins and okadaic acid (PSP and DSP toxins, respectively). For the purpose of avoiding acute poisonings in the population, there are maximum toxin levels that might be present in the food for sale to the consumer. Nevertheless, the presence of toxins in lower concentrations than the legal limit may be able to cause chronic poisonings. The aim of the study is to detect the presence of toxins that are reaching consumers, whether it is within the legal limit or not. A sampling was carried in different fisheries in the Community of Madrid, without including the city of Madrid, analysing the concentration of PSP and DSP toxins present in 50 samples of mussels, clams, cockles, scallops and zamburiñas. The results obtained shows that around 4% of the samples of molluscs acquired contained saxitoxins and in the 6%, okadaic acid was detected. either in form of traces or a positive confirmed according to the analytic method. The obtained data are under the maximun legal EU requirements.
Bibliographische Referenzen
- Kaye Lamb, W (redactor). The voyage of George Vancouver, 1791-1795: volume 2. Londres: Routledge, 2016.
- Moore, SK et al. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ Heal. 2008; 7 (2): S2-S4. https://doi.org/10.1186/1476-069X-7
- Landsberg, JH. The effects of harmful algal blooms on aquatic organisms. Rev Fish Sci. 2002; 10(2): 113-390. https://doi.org/10.1080/20026491051695
- Shumway, SE. A Review of the Effects of Algal Blooms on Shellfish and Aquaculture. J World Aquac Soc. 1990; 21(2): 65-104. https://doi.org/10.1111/j.1749-7345.1990.tb00529.x
- Shumway SE, Cembella AD. The impact of toxic algae on scallop culture and fisheries. Rev Fish Sci. 1993; 1(2): 121-150. https://doi.org/10.1080/10641269309388538
- Maneiro E, Rodas VL, Costas E, Hernández, JM. Shellfish consumption: A major risk factor for colorectal cancer. Med Hypotheses. 2008;70(2):409-412. https://doi.org/10.1016/j.mehy.2007.03.041
- Llewellyn LE. Saxitoxin, a toxic marine natural product that targets a multitude of receptors. Nat Prod Rep. 23(2):200-222. https://doi.org/10.1039/b501296c
- Cestèle S, Catterall WA. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 82(9-10):883-892. https://doi.org/10.1016/s0300-9084(00)01174-3
- Kumagai M, et al. Okadaic acid as the causative toxin of diarrhetic shellfish poisoning in Europe. Agric Biol Chem. 1986; 50(11): 2853-2857. https://doi.org/10.1080/00021369.1986.10867817
- Morton SL, Moeller PD, Young KA, Lanoue B. Okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum Faust isolated from the Belizean coral reef ecosystem. Toxicon. 1998; 36 (1): 201-206. http://doi.org/10.1016/s0041-0101(97)00054-8
- Bialojan C, Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988; 256 (1): 283-290. https://dx.doi.org/10.1042%2Fbj2560283
- James KJ, Carey B, O'Halloran J, van Pelt FN, Skrabáková Z. Shellfish toxicity: human health implications of marine algal toxins. Epidemiol Infect. 2010; 138(7):927-940. https://doi.org/10.1017/S0950268810000853
- Ramos PB, Diehl F, Dos Santos JM, Monserrat JM, Yunes JS. Oxidative stress in rats induced by consumption of saxitoxin contaminated drink water. Harmful Algae. 2014; 37: 68-74. https://doi.org/10.1016/j.hal.2014.04.002
- Traoré A. et al. Epigenetic properties of the diarrhetic marine toxin okadaic acid: inhibition of the gap junctional intercellular communication in a human intestine epithelial cell line. Arch Toxicol. 2003; 77(11):657-662. https://doi.org/10.1007/s00204-003-0460-0
- Diehl F, Ramos PB, Dos Santos JM, Barros DM, Yunes JS. Behavioral alterations induced by repeated saxitoxin exposure in drinking water. J Venom Anim Toxins Incl Trop Dis. 2016; 22:18. https://doi.org/10.1186/s40409-016-0072-9
- Fujiki H, Suganuma M. Tumor Promotion by Inhibitors of ProteinZ Phosphatases 1 and 2A: The Okadaic Acid Class of Compounds. Adv Cancer Res. 1993; 61:143-194. https://doi.org/10.1016/S0065-230X(08)60958-6
- Cordier S, Monfort C, Miossec L, Richardson S, Belin C. Ecological Analysis of Digestive Cancer Mortality Related to Contamination by Diarrhetic Shellfish Poisoning Toxins along the Coasts of France. Environ Res. 2000; 84(2): 145-150. https://doi.org/10.1006/enrs.2000.4103
- Matias WG, Creppy E. Transplacental passage of [3H]-okadaic acid in pregnant mice measured by radioactivity and high-performance liquid chromatography. Hum Exp Toxicol. 1996; 15(3): 226-230. https://doi.org/10.1177/096032719601500307
- Ferlay J. et al. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer. 2018;103: 356-387. https://doi.org/10.1016/j.ejca.2018.07.005
- Valdiglesias V, Prego-Faraldo MV, Paśaro E, Meńdez J, Laffon B. Okadaic Acid: More than a diarrheic toxin. Marine Drugs. 2013; 11(11): 4328-4349. https://doi.org/10.3390/md11114328