Modelización y predicción del tráfico marítimo en los puertos españoles
- Coto-Millán, Pablo
- Inglada-Pérez, Lucía
- Casares, Pedro
- Inglada, Vicente
ISSN: 2171-892X
Año de publicación: 2019
Número: 27
Tipo: Artículo
Otras publicaciones en: Anales de ASEPUMA
Resumen
Traditionally, maritime transport has played an important role in the world economy through its close connection with world trade and a large part of the international exchanges of products used in this regard. This is the reason why it is considered enhanced, if possible, in a completely globalized and interdependent world like the current one, where the commercial competitiveness of a country depends on a place of adequate access to an international maritime transport service and an efficient port system. In the Spanish case, the port system plays a very important strategic role in economic activity and in the economic and social system that is close to the foreign system, foreign trade is carried out with maritime transport and a significant part of the territory has a insular character. The modeling and prediction of maritime transport demand is also relevant for efficient system management, as well as the efficient future of investments, taking into account the cost of investments, as well as their long-term nature. . In general, their interest extends to all agents involved in maritime transport: shipowners, charterers, etc. and the activities developed inside it. The general objective of this work is the modeling and prediction of maritime traffic in Spanish ports. For this, a wide range of linear and non-linear models is used, such as SARIMA, Exponential Smoothing and neural networks. The accuracy of the predictions with the fitted models is also used to evaluate the mean absolute error or the mean square error.
Referencias bibliográficas
- Box, G. y Jenkins, G. (1970). “Time Series Analysis: Forecasting and Control”. HoldenDay, San Francisco.
- Box, G.E.P., Jenkins, G.M. y Reinsel, G.C. (1994). “Time Series Analysis; Forecasting and Control”. 3rd Edition, Prentice Hall, Englewood Cliff, New Jersey.
- Chen, S.H. Y Chen, J.N., (2010). “Forecasting container throughputs at ports using genetic programming”. Expert Systems with Applications, 37(3), pp. 2054–2058.
- Coto Millán, P., Inglada Pérez, L., Casares, P. y Inglada López De Sabando, V. (2018). “Modelización del transporte marítimo de contenedores”, Estudios de Economía Aplicada, pp. 675-690.
- Coto Millan, P., Banos Pino J., Pesquera, M.A., Castanedo, J.A. y Inglada Perez, L. (2010,). “The Conditioned Demands of “General Merchandise”, “Dry Bulk” and “Liquid Bulk” Sea Transport”. En Essays on Port Economics. Springer Verlag.
- Glen, D. R. (2006). “The modelling of dry bulk and tanker markets: a survey”. Maritime Policy and Management, 33 (1), pp. 431-455.
- Huang, G.-B., Zhu, Q.-Y. y Siew, C.-K. (2006). “Extreme learning machine: Theory and applications”. Neurocomputing, 70, pp.489–501.
- Hyndman, R. J., Koehler, A. B., Snyder, R. D., y GROSE, S. (2002). “A state space framework for automatic forecasting using exponential smoothing methods”. International Journal of Forecasting, 18(3), pp. 439–454.
- Hyndman, R.J. y Koehler, A.B. (2006). "Another look at measures of forecast accuracy". International Journal of Forecasting, 22(4), pp.679-688.
- Hyndman, R. J., Koehler, A. B., Ord, J. K., y Snyder, R. D. (2008). “Forecasting with Exponential Smoothing: The State Space Approach”. Berlin: Springer-Verlag.
- Hyndman, R.J. y Athanasopoulos, G. (2018). “Forecasting: principles and practice,” 2nd ed., OTexts, Melbourne, Australia.
- Inglada Perez L. (2015).” Evaluación de la no linealidad y del comportamiento caótico en el transporte marítimo”. Revista de Evaluación de Programas y Políticas Públicas (Journal of Public Programs and Policy Evaluation), 4, pp. 40-58.
- Lam, W. H., NG, P. L., Seabrooke, W., y HUI, E. C. (2004). “Forecasts and reliability analysis of port cargo throughput in Hong Kong.” Journal of Urban Planning and Development, 130(3), pp. 133–144.
- Mostafa, M. M. (2004). “Forecasting the Suez Canal traffic: A neural network analysis”. Maritime Policy and Management, 31 (2), pp. 139-156.
- Peng, W.Y. y Chu, C.W., (2009). “A comparison of univariate methods for forecasting container throughput volumes”. Mathematical and Computer Modelling, 50, pp. 1045– 1057.
- Washington, S., Karlaftis, M. y Mannering, F. (2003). “Statistical and Econometric Methods for Transportation Data Analysis”, Chapman and Hall/CRC Press, Boca Raton, FL.