Comparison of methods for dealing with missing values in the EPV-R

  1. David Paniagua 1
  2. Pedro J. Amor 2
  3. Enrique Echeburúa 3
  4. Francisco J. Abad 1
  1. 1 Universidad Autónoma de Madrid

    Universidad Autónoma de Madrid

    Madrid, España


  2. 2 Universidad Nacional de Educación a Distancia

    Universidad Nacional de Educación a Distancia

    Madrid, España


  3. 3 Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España



ISSN: 0214-9915

Year of publication: 2017

Volume: 29

Issue: 3

Pages: 384-389

Type: Article


More publications in: Psicothema

Sustainable development goals


Background: The development of an effective instrument to assess the risk of partner violence is a topic of great social relevance. This study evaluates the scale of “Predicción del Riesgo de Violencia Grave Contra la Pareja” –Revisada– (EPV-R - Severe Intimate Partner Violence Risk Prediction Scale-Revised), a tool developed in Spain, which is facing the problem of how to treat the high rate of missing values, as is usual in this type of scale. Method: First, responses to the EPV-R in a sample of 1215 male abusers who were reported to the police were used to analyze the patterns of occurrence of missing values, as well as the factor structure. Second, we analyzed the performance of various imputation methods using simulated data that emulates the missing data mechanism found in the empirical database. Results: The imputation procedure originally proposed by the authors of the scale provides acceptable results, although the application of a method based on the Item Response Theory could provide greater accuracy and offers some additional advantages. Conclusions: Item Response Theory appears to be a useful tool for imputing missing data in this type of questionnaire.

Funding information

The research has been funded by the Ministry of Economy and Competitivity of Spain, project PSI2013-44300-P.


    • PSI2013-44300-P

Bibliographic References

  • Bernaards, C. A., & Sijtsma, K. (2000). Influence of imputation and EM methods on factor analysis when item nonresponse in questionnaire data is nonignorable. Multivariate Behavioral Research, 35(3), 321-364.
  • Chalmers, R. (2012). Mirt: A multidimensional item response theory package for the R Environment. Journal of Statistical Software, 48(6), 1-29.
  • Echeburúa, E., Amor, P. J., Loinaz, I., & Corral, P. (2010). Escala de Predicción del Riesgo de Violencia Grave contra la pareja –Revisada– (EPV-R) [Severe Intimate Partner Violence Risk Prediction Scale-Revised]. Psicothema, 22(4), 1054-1060.
  • Echeburúa, E., Fernández-Montalvo, J., Corral, P., & López-Goñi, J. J. (2009). Assessing risk markers in intimate partner femicide and severe violence: A new assessment instrument. Journal of Interpersonal Violence, 24(6), 925-939.
  • Enders, C. K. (2010). Applied missing data analysis. New York: Guilford Press.
  • Fernández-Alonso, R., Suárez-Álvarez, J., & Muñiz, J. (2012). Imputación de datos perdidos en las evaluaciones diagnósticas educativas [Imputation methods for missing data in educational diagnostic evaluation]. Psicothema, 24(1), 167-175.
  • Fernández-Montalvo, J., Echeburúa, E., & Amor, P. J. (2005). Aggressors against women in prison and in community: An exploratory study of a differential profile. International Journal of Offender Therapy and Comparative Criminology, 49(2), 158-167.
  • Gorsuch, R. L. (2003). Factor analysis. In J. A. Schinka, W. F. Velicer, & I. B. Weiner (Eds.), Handbook of psychology: Research methods in psychology, vol. 2 (pp. 143-164). Hoboken, NJ: John Wiley & Sons.
  • Hardouin, J., Conroy, R., & Sébille, V. (2011). Imputation by the mean score should be avoided when validating a patient reported outcomes questionnaire by a Rasch model in presence of informative missing data. BMC Medical Research Methodology, 11, 105.
  • Hilton, N. Z., Harris, G. T., Rice, M. E., Lang, C., Cormier, C. A., & Lines, K. J. (2004). A brief actuarial assessment for the prediction of wife assault recidivism: The Ontario domestic assault risk assessment. Psychological Assessment, 16(3), 267-275.
  • Holman, R., & Glas, C. W. (2005). Modelling non-ignorable missing-data mechanisms with item response theory models. British Journal of Mathematical & Statistical Psychology, 58(1), 1-17.
  • Huisman, M., & Molenaar, I. W. (2001). Imputation of missing scale data with item response theory. In A. Boomsma, M. Duijn, & T. Snijders (Eds.), Essays on item response theory (pp. 221-244). New York: Springer.
  • Lorenzo-Seva, U., & Ferrando, P. J. (2013). Factor 9.2: A comprehensive program for fitting exploratory and semiconfirmatory factor analysis and IRT models. Applied Psychological Measurement, 37(6), 497-498.
  • Muthén, B. O., & Muthén, L. K. (2012). Mplus Version 7: User’s guide. Los Angeles, CA: Muthén & Muthén.
  • Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24(1), 50-64.
  • Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147-177.
  • Van Ginkel, J. R., Sijtsma, K., van der Ark, L. A., & Vermunt, J. K. (2010). Incidence of missing item scores in personality measurement, and simple item-score imputation. Methodology, 6(1), 17-30.
  • Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427-450.