Mapping species richness of endemic macroinvertebrates by overlapping distribution maps

  1. Palmer, Miquel
  2. Pons, Guillem X.
  3. Outerelo, Raimundo
  4. Vives, Eduard
  5. Bellés, Xavier
  6. Garcia, Lluc
  7. Linde, Marta
  8. Gómez-Pujol, Lluis
  9. March, David
Revista:
Bolletí de la Societat d'Història Natural de les Balears

ISSN: 0212-260X

Año de publicación: 2012

Número: 55

Páginas: 99-122

Tipo: Artículo

Otras publicaciones en: Bolletí de la Societat d'Història Natural de les Balears

Resumen

Inventory-based approaches (i.e., those that directly relate species richness to explanatory variables) do not work on the medium and local scale that was studied in this paper; even when ecologically-meaningful environmental predictors were used. The use of an alternative approach (Taxon-based diversity mapping) is proposed. This approach starts by modelling the probability of occurrence of twelve target endemic species using environmental variables as predictors. Next, it projects the probability of occurrence from 48 sampled sites to a grid of 532 1-km2 units. Finally, the approach estimates endemic species richness at these 532 1-km2 units by overlapping the twelve maps inferred. We also propose a new approach whose purpose is to detect possible false absences and unstable presences. These doubtful observations were excluded from ecological niche modelling. In addition to species richness, the patterns experienced by species composition were analysed. Species composition experienced strong changes (i.e., large turnover), while species richness remained constant. This stasis in species richness is neither related to low environmental variability (both the biotic and abiotic scenarios are diverse) nor to the lack of species-environment relationships (not only species composition but also species-specific responses are correlated with environment). The area studied is environmentally diverse and species turnover of the macroinvertebrate community was moderate to large. Species composition was significantly correlated with environment (minimum temperature). The predicted number of target endemic species per cell in 92% of the studied area fell between 3 and 5. Therefore Taxonbased diversity mapping has been confirmed as a valid alternative to conventional inventory-based diversity mapping. Additionally, the new procedure proposed here for dealing with noisy presence/absence data produces more accurate distributional maps of individual species.

Referencias bibliográficas

  • Bhattarai, K.R., Vetaas, O.R. and Grytnes, J.A. 2004. Fern species richness along a central Himalayan elevation gradient, Nepal. Journal of Biogeography, 31: 389-400.
  • Bolòs, O. 1996. La vegetació de les Illes Balears. Comunitats de plantes. Institut d’Estudis Catalans. Barcelona.
  • Brown, J.H. and Lomolino, M.V. 1998. Biogeography. Sinauer Assoc., Sunderland.
  • Buttel, L. A. and Durret, R. 2002. Competition and species packing in patchy environments. Theoretical Population Biology, 61: 265-276.
  • Chave, J. and Levin, S. 2003. Scale and scaling in ecological and economic systems Environmental and Resource Economics, 26: 527-557.
  • Colwell, R.K., Rahbek, C. and Gotelli, N.J. 2004. The Mid-Domain effect and species richness patterns: What have we learned so far?. The American Naturalist, 163: 1-23.
  • Couteron, P. and Ollier, B. 2005. A generalized, variogram-based framework for multi-scale ordination. Ecology, 86: 828-834.
  • Diniz-Filho, J.A.F., Bini, L. M. and Hawkins, B. A. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography, 12: 53-64.
  • Fallot, P. 1922. Etude géologique de la Sierra de Majorque. Thése d’état, Libr. Polytechnique Ch. Béranger, Paris and Liège. 480 pp.
  • Fielding, A.H. and Bell, A.F. 2003. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24: 38-49.
  • Fortin, M.J. and Payette, S. 2005. How to test the significance of the relation between spatially autocorrelated data at the lamdscape scale: A case study using fire and forest maps. Ecoscience, 9: 213-218.
  • Gauch, H. G. and Whitaker, R. H. 1972. Coenocline simulation. Ecology, 53: 446-451.
  • Gelabert, B., Fornós, J.J. and Gómez-Pujol, L. 2003. Geomorphological characteristics and slope processes associated with different basins: Mallorca (Western Mediterranean). Geomorphology, 52: 253-267.
  • Gelabert, B. 1998. La estructura geológica de la mitad occidental de la isla de Mallorca. ITGME. Madrid.
  • Guijarro, J.A. 1986. Contribución a la bioclimatología de Baleares. PhD Thesis. Universitat de les Illes Balears.
  • Guisan, A. and Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135: 147-186.
  • Hawkins, B., Porter, E.E. and Diniz-Filho, J.A.F. 2003. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology, 84: 1608-1623.
  • Hubbell, S.P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton.
  • Keitt, T H., Bjørnstad, O., Dixon, P. M. and Citron-Pousty, S. 2002. Accounting for spatial pattern when modelling organism-environment interactions. Ecography, 25: 616-625.
  • Kerr, J.T. and Ostrovsky, M. 2003. From space to species: ecological applications for remote sensing. Trends in Ecology and Evolution, 18: 299-305.
  • Lawton, J.H., Bignell, D.E., Bolton, B., Bloemers, G.F., Eggleton, P., Hammond, P.M., Hodda, M., Holt, R.D., Larsen, T.B., Mawdsley, N.A., Stork, N.E., Srivastava, D.S. and Watt, A.D. 1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature, 391: 72-76.
  • Legendre, P., Dale, M.R.T., Fortin, M.J., Gurevitvh, J., Hohn, M. and Myers, D. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography, 25: 601-615.
  • Legendre, P. and Legendre, L. 1998. Numerical Ecology. Elsevier Science B.V., Amsterdam.
  • Lennon, J.J. 2000. Red-shifts and red herrings in geographical ecology. Ecography, 23: 101-113.
  • Lichstein, J.W., Simons, T.R., Shriner, S.A. and Franzreb, K. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 73: 445-463.
  • Liebhold, A.M. and Sharov, A.A. 1998. Testing for correaltion in the presence of spatial autocorrelation in insect count data. In Baumgartner, J., Brandmayr, P. and Manly, B.F.J. (ed.), Population and community ecology for insect management and conservation. Bakelma, Rotterdam.
  • Mac Nally, R., Fleishman, E., Fay, J.P. and Murphy, D.D. 2003. Modelling butterflies species richness using mesoscale environmental variables: model construction and validation for mountain ranges in the Great Basin of western North America. Biological Conservation, 110: 21-31.
  • Mattoni, R., Longcore, T. and Novotny, V. 2000. Arthropod monitoring for fine-scale habitat analysis: a case study of the El Segundo sand dunes. Environmental Management, 25: 445-452.
  • McCain, C.M. 2004. The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. Journal of Biogeography, 31: 19-31.
  • Moisen, G.G. and Frescino, T.S. 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157: 209-225.
  • Müller, R., Nowicki, C., Barthlott, W. and Ibisch, P.L. 2003. Biodiversity and endemism mapping as tool for regional conservation planning - case study of the Pleurothallidinae (Orchidaceae) of the Andean rain forests in Bolivia. Biodiversity and Conservation, 12: 2005-2024.
  • Nogués-Bravo, D. and Martínez-Rica, J.P. 2004. Factors controlling the spatial species richness pattern of four grups of terrestrial vertebrates in an area between two different geographic regions in the northern Spain. Journal of Biogeography, 31: 629-640.
  • Oksanen, J. 2005. Multivariate Analysis of Ecological Communities in R: vegan tutorial. R pakckage at: http://cran.r-project.org/.
  • Oksanen, J. and Minchin, P.R. 2002. Continuum theory revisited: what shape are species responses along ecological gradients?. Ecological Modelling, 157: 119-129.
  • Oliver, I. and Beattie, A.J. 1996. Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology, 10: 99-109.
  • Palmer, M., Gómez-Pujol, L., Pons, G. X., Mateu, J., Mcminn, M. And Rodríguez, A. 2002. Cartografia de la distribució d'espècies endèmiques i bioindicadores a la Serra de Tramuntana: una aproximació des de la teledetecció i la geoestadística. Conselleria de Medi Ambient, Govern Balear, Palma de Mallorca. Informe inèdit.
  • Palmer, M., Gómez-Pujol, L., Pons, G. X., Mateu, J. and Linde, M. 2003. Noisy data and distrubution maps: The example of Phylan semicostatus Mulasant and Rey, 1984 (Coleoptera, Tenebrionidae) from Serra de Tramunatana (Mallorca, Western Mediterranean). Graellsia, 59: 389-398.
  • Palmer, M., Linde, M. and Pons, G. X. 2004. Correlational patterns between invertebrate species composition and the presence of an invasive plant. Acta Oecologica, 26: 219-226.
  • Pei-Fen, L., Tzung-Su, D., Fu-Hsiung, H., Shu, G. 2004. Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization. Journal of Biogeography, 31: 307-314.
  • Putman, R.J. and Wratten, S.D. 1984. Principles of Ecology. University of California Press, Berkeley.
  • Ribeiro, P.J. and Diggle, P.J. 2001. GeoR: A package for geostatistical analysis. Available for download at: http://cran.r-project.org. R-News, 1, 15-18.
  • Ruggiero, A. and Kitzberger, T. 2004. Environmental correlates of mammal species richness in South America: effects of spatial structure, taxonomy and geographical range. Ecography, 27: 401-416.
  • Schlather, M., 2001. Simulation of stationary and isotropic random fields. R-News, 1: 18-20.
  • Soberón, J. and Peterson, A.T. 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics, 2: 1-10.
  • Stefanescu, C., Herrando, S. and Páramo, F. 2004. Butterfly species richness in the north-west Mediterranean Basin: The role of natural an human-induced factors. JournalBiogeography, 31: 905-915.
  • Ter Braak, C.J.F. and Smilauer, P. 2002. CANOCO reference manual and user's guide to Canoco for Windows: Software for Canonical Community ordination Microcomputer Power, Ithaca, NY, USA.
  • Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E. and Steininger, M. 2003. Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution, 18: 306-314.
  • Wagner, H.H. 2003. Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology, 84: 1045-1057.
  • Wagner, H.H. 2005. Direct multiscale ordination with canonical correspondence analysis. Ecology, 85: 342-351.