Caracterización del crosstalk en matrices de cristales centelleadores acoplados a SiPMs con aplicación en PET

  1. Jaime Rosado Vélez 1
  2. Guillermo Martínez Valdunquillo 1
  1. 1 Facultad de Ciencias Físicas. Universidad complutense. Madrid
Journal:
Revista de Física Médica

ISSN: 1576-6632

Year of publication: 2019

Volume: 20

Issue: 1

Pages: 81-88

Type: Article

More publications in: Revista de Física Médica

Abstract

We have performed an experimental characterization of the crosstalk in matrices of scintillation crystals coupled to silicon photomultipliers (SiPMs) with application in PET scanners. The used method is based on the analysis of the amplitude spectrum of output signal pulses of the SiPMs when the crystals are irradiated by a Cs-137 source. Matrices of crystals with two different segmentation techniques have been studied. We have analyzed the possible causes of crosstalk in the system. As a conclusion, we have found that the transmission of scintillation photons through the protector optical window of the SiPMs contributes significantly to the crosstalk. In this work quantitative measurements of this effect are reported for the first time.

Bibliographic References

  • Llosá G. Recent developments in photodetection for medical applications. Nucl Instrum Meth A. 2015;787:353-7. https://doi.org/10.1016/j.nima.2015.01.071
  • Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng 2011;39(4):1358-77. https://doi.org/10.1007/s10439-011-0266-9
  • Yamazaki M, Takeshita T, Hasegawa Y. Next-generation PET capability with lutetium fine silicate and multi-pixel photon counter. J Instrum 2012; 7, P10014. https://doi.org/10.1088/1748-0221/7/10/P10014
  • Stickel JR, Qi J, Cherry SR. Fabrication and Characterization of a 0.5-mm Lutetium Oxyorthosilicate Detector Array for High-Resolution PET Applications. J Nucl Med 2007;48:115-21.
  • Rosado J, Hidalgo S. Characterization and modeling of crosstalk and afterpulsing in Hamamatsu silicon photomultipliers. J. Instrum. 2015;10, P10031. https://doi.org/10.1088/1748-0221/10/10/P10031
  • Mohammadi A, Inadama N, Yoshida E, Nishikido F, Shimizu K, Yamaya T. Improvement of crystal identification performance for a four layer-layer DOI detector composed of crystals segmented by laser processing. Nucl Instrum Meth A. 2017;866:29-35. https://doi.org/10.1016/j.nima.2017.05.051
  • Yamamoto S, Imaizumi M, Watabe T, Watabe H, Kanai Y, Shimosegawa E. et al. Development of a Si-PM-based highresolution PET system for small animals. Phys Med Biol 2010;55:5817-31. https://doi.org/10.1088/0031-9155/55/19/013
  • Sánchez F, Moliner L, Correcher C, González A, Orero A, Carles M. et al. Small animal PET scanner based on monolithic LYSO crystals: Performance evaluation. Med Phys 2012;39(2):643-53. https://doi.org/10.1118/1.3673771
  • Vaska P, Stoll SP, Woody CL, Schlyer DJ, Shokouhi S. (2003). Effects on Intercrystal Crosstalk on Multielement LSO/APD PET Detectors. IEEE T. Nucl Sci 2003;50(3):362-6. https://doi.org/10.1109/TNS.2003.812452
  • Asano A, Berge D, Bonanno G, Bryan M, Gebhardt B, Grillo A. et al. Evaluation of silicon photomultipliers for dual-mirror Small-Sized Telescopes of Cherenkov Telescope Array. Nucl Instrum Meth A. 2017. (En prensa). https://doi.org/10.1016/j.nima.2017.11.017