Inmovilización de TiO2 sobre polímeros transparentes en el UV-A para la eliminación fotocatalítica de tricloroetileno en aire

  1. Cámara Hurtado, Rosa María
Dirigida por:
  1. Raquel Portela Rodríguez Director/a
  2. Fernando Gutiérrez Martín Director/a

Universidad de defensa: Universidad Politécnica de Madrid

Fecha de defensa: 01 de febrero de 2013

Tribunal:
  1. Manuel Cortijo Martínez Presidente/a
  2. Concepción González García Secretario/a
  3. Pedro Avila García Vocal
  4. Mª Fernanda Rey-Stolle Valcarce Vocal
  5. Silvia Suarez Gil Vocal

Tipo: Tesis

Resumen

El gran desarrollo industrial y demográfico de las últimas décadas ha dado lugar a un consumo crecientemente insostenible de energía y materias primas, que influye negativamente en el ambiente por la gran cantidad de contaminantes generados. Entre las emisiones tienen gran importancia los compuestos orgánicos volátiles (COV), y entre ellos los compuestos halogenados como el tricloroetileno, debido a su elevada toxicidad y resistencia a la degradación. Las tecnologías generalmente empleadas para la degradación de estos compuestos presentan inconvenientes derivados de la generación de productos tóxicos intermedios o su elevado coste. Dentro de los procesos avanzados de oxidación (Advanced Oxidation Processes AOP), la fotocatálisis resulta una técnica atractiva e innovadora de interés creciente en su aplicación para la eliminación de multitud de compuestos orgánicos e inorgánicos, y se ha revelado como una tecnología efectiva en la eliminación de compuestos orgánicos volátiles clorados como el tricloroetileno. Además, al poder aprovechar la luz solar como fuente de radiación UV permite una reducción significativa de costes energéticos y de operación. Los semiconductores más adecuados para su empleo como fotocatalizadores con aprovechamiento de la luz solar son aquellos que tienen una banda de energía comparable a la de los fotones de luz visible o, en su defecto, de luz ultravioleta A (Eg < 3,5 eV), siendo el más empleado el dióxido de titanio (TiO2). El objetivo principal de este trabajo es el estudio de polímeros orgánicos comerciales como soporte para el TiO2 en fotocatálisis heterogénea y su ensayo para la eliminación de tricloroetileno en aire. Para ello, se han evaluado sus propiedades ópticas y su resistencia a la fotodegradación, y se ha optimizado la fijación del fotocatalizador para conseguir un recubrimiento homogéneo, duradero y con elevada actividad fotocatalítica en diversas condiciones de operación. Los materiales plásticos ensayados fueron el polietileno (PE), copolímero de etil vinil acetato con distintos aditivos (EVA, EVA-H y EVA-SH), polipropileno (PP), polimetil (metacrilato) fabricado en colada y extrusión (PMMA-C y PMMA-E), policarbonato compacto y celular (PC-C y PC-Ce), polivinilo rígido y flexible (PVC-R y PVC-F), poliestireno (PS) y poliésteres (PET y PETG). En base a sus propiedades ópticas se seleccionaron el PP, PS, PMMA-C, EVA-SH y PVC-R, los cuales mostraron un valor de transmitancia superior al 80% en el entorno de la región estudiada (?=365nm). Para la síntesis del fotocatalizador se empleó la tecnología sol-gel y la impregnación multicapa de los polímeros seleccionados por el método de dip-coating con secado intermedio a temperaturas moderadas. Con el fin de evaluar el envejecimiento de los polímeros bajo la radiación UV, y el efecto sobre éste del recubrimiento fotoactivo, se realizó un estudio en una cámara de exposición a la luz solar durante 150 días, evaluándose la resistencia química y la resistencia mecánica. Los resultados de espectroscopía infrarroja y del test de tracción tras el envejecimiento revelaron una mayor resistencia del PMMA y una degradación mayor en el PS, PVC-R y EVA SH, con una apreciable pérdida del recubrimiento en todos los polímeros. Los fotocatalizadores preparados sobre soportes sin tratamiento y con tres capas de óxido de titanio mostraron mejores resultados de actividad con PMMA-C, PET y PS, con buenos resultados de mineralización. Para conseguir una mayor y mejor fijación de la película al soporte se realizaron tratamientos químicos abrasivos con H2SO4 y NaOH y tratamientos de funcionalización superficial por tecnología de plasma a presión atmosférica (APP) y a baja presión (LPP). Con los tratamientos de plasma se consiguió una excelente mojabilidad de los soportes, que dio lugar a una distribución uniforme y más abundante del fotocatalizador, mientras que con los tratamientos químicos no se obtuvo una mejora significativa. Asimismo, se prepararon fotocatalizadores con una capa previa de dióxido de silicio con la intervención de surfactantes (PDDA-SiO2-3TiO2 y SiO2FC-3TiO2), consiguiéndose buenas propiedades de la película en todos los casos. Los mejores resultados de actividad con tratamiento LPP y tres capas de TiO2 se lograron con PMMA-C (91% de conversión a 30 ppm de TCE y caudal 200 ml·min-1) mejorando significativamente también la actividad fotocatalítica en PVC-R y PS. Sin embargo, el material más activo de todos los ensayados fue el PMMA-C con el recubrimiento SiO2FC-3TiO2, logrando el mejor grado de mineralización, del 45%, y una velocidad de 1,89 x 10-6 mol· m-2 · s-1, que dio lugar a la eliminación del 100 % del tricloroetileno en las condiciones anteriormente descritas. A modo comparativo se realizaron ensayos de actividad con otro contaminante orgánico tipo, el formaldehído, cuya degradación fotocatalítica fue también excelente (100% de conversión y 80% de mineralización con 24 ppm de HCHO en un caudal de aire seco de 200 ml·min-1). Los buenos resultados de actividad obtenidos confirman las enormes posibilidades que ofrecen los polímeros transparentes en el UV-A como soportes del dióxido de titanio para la eliminación fotocatalítica de contaminantes en aire. ABSTRACT The great industrial and demographic development of recent decades has led to an unsustainable increase of energy and raw materials consumption that negatively affects the environment due to the large amount of waste and pollutants generated. Between emissions generated organic compounds (VOCs), specially the halogenated ones such as trichloroethylene, are particularly important due to its high toxicity and resistance to degradation. The technologies generally used for the degradation of these compounds have serious inconveniences due to the generation of toxic intermediates turn creating the problem of disposal besides the high cost. Among the advanced oxidation processes (AOP), photocatalysis is an attractive and innovative technique with growing interest in its application for the removal of many organic and inorganic compounds, and has emerged as an effective technology in eliminating chlorinated organic compounds such as trichloroethylene. In addition, as it allows the use of sunlight as a source of UV radiation there is a significant reduction of energy costs and operation. Semiconductors suitable to be used as photocatalyst activated by sunlight are those having an energy band comparable to that of the visible or UV-A light (Eg <3,5 eV), being titanium dioxide (TiO2), the most widely used. The main objective of this study is the test of commercial organic polymers as supports for TiO2 to be applied in heterogeneous photocatalysis and its assay for removing trichloroethylene in air. To accomplish that, its optical properties and resistance to photooxidation have been evaluated, and different operating conditions have been tested in order to optimize the fixation of the photocatalyst to obtain a homogeneous coating, with durable and high photocatalytic activity. The plastic materials tested were: polyethylene (PE), ethyl vinyl acetace copolymers with different additives (EVA, EVA-H and EVA -SH), polypropylene (PP), poly methyl (methacrylate) manufactured by sheet moulding and extrusion (PMMA-C and PMMA-E), compact and cellular polycarbonates (PC-C PC-Ce), rigid and flexible polyvinyl chloride (PVC-R and PVC-F), polystyrene (PS) and polyesters (PET and PETG). On the basis of their optical properties PP, PS, PMMA-C, EVA-SH and PVC-R were selected, as they showed a transmittance value greater than 80% in the range of the studied region (? = 365nm). For the synthesis of the photocatalyst sol-gel technology was employed with multilayers impregnation of the polymers selected by dip-coating, with intermediate TiO2 drying at moderate temperatures. To evaluate the polymers aging due to UV radiation, and the effect of photoactive coating thereon, a study in an sunlight exposure chamber for 150 days was performed, evaluating the chemical resistance and the mechanical strength. The results of infrared spectroscopy and tensile stress test after aging showed the PMMA is the most resistant sample, but a greater degradation in PS, PVC-R and EVA SH, with a visible loss of the coating in all the polymers tested. The photocatalysts prepared on the untreated substrates with three layers of TiO2 showed better activity results when PMMA-C, PET and PS where used. To achieve greater and better fixation of the film to the support, chemical abrasive treatments, with H2SO4 and NaOH, as well as surface functionalization treatments with atmospheric pressure plasma (APP) and low pressure plasma (LPP) technologies were performed. The plasma treatment showed the best results, with an excellent wettability of the substrates that lead to a better and uniform distribution of the photocatalyst compared to the chemical treatments tested, in which no significant improvement was obtained. Also photocatalysts were prepared with the a silicon dioxide previous layer with the help of surfactants (SiO2- 3TiO2 PDDA-and-3TiO2 SiO2FC), obtaining good properties of the film in all cases. The best activity results for LPP-treated samples with three layers of TiO2 were achieved with PMMA-C (91% conversion, in conditions of 30 ppm of TCE and 200 ml·min-1 air flow rate), with a significant improvement of the photocatalytic activity in PVC-R and PS samples too. However, among all the materials assayed, PMMA-C with SiO2FC-3TiO2 coating was the most active one, achieving the highest mineralization grade (45%) and a reaction rate of 1,89 x 10-6 mol· m-2 · s-1, with total trichloroethylene elimination in the same conditions. As a comparative assay, an activity test was also performed with another typical organic contaminant, formaldehyde, also with good results (100% conversion with 24 ppm of HCHO and 200 ml·min-1 gas flow rate). The good activity results obtained in this study confirm the great potential of organic polymers which are transparent in the UV-A as supports for titanium dioxide for photocatalytic removal of air organic pollutants.