Host and environmental factors as determinants of equine piroplasmosis seroprevalence in Central Spain

  1. Bartolomé del Pino, Leticia E. 1
  2. Meana, Aránzazu 1
  1. 1 Universidad Complutense de Madrid, Faculty of Veterinary Medicine, Dept. of Animal Health. Avda. Puerta de Hierro s/n. 28040 Madrid
Revista:
Spanish journal of agricultural research

ISSN: 1695-971X 2171-9292

Año de publicación: 2020

Volumen: 18

Número: 3

Tipo: Artículo

DOI: 10.5424/SJAR/2020183-15315 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Spanish journal of agricultural research

Resumen

Aim of study: To estimate equine piroplasmosis seroprevalence, identify associated risk factors and assess infection recentness.Area of study: Community of Madrid (Central Spain)Material and methods: Sera from 139 horses and 40 donkeys were examined by cELISA to evaluate Babesia caballi and Theileria equi seroprevalences and examine potential risk factors. They included species, gender, age, breed, colour coat, dedication, external parasite treatments, access to pasture, contact with other species, new introduction, tick infestation, farm altitude, land cover, soil type and climatic zone. A bivariate analysis was performed and significant variables were included in a logistic regression model to examine their independent contribution. In positive samples ELISA inhibition percentiles (EIPs) were used to assess whether infections were old or recent.Main results: True seroprevalence (95% CI), adjusted for test sensitivity and specificity was 19% (13-27) for T. equi and 1% (0-3) for B. caballi. In the bivariate analysis, T. equi seroprevalence varied significantly according to horse and farm-level explanatory variables; high seroprevalence groups generally had high EIPs suggesting recent infection. The multivariable analysis revealed that T. equi seroprevalence increased with age, it was higher in police horses compared to sporting, recreational and breeding animals and in those living in lower altitude where planosol soil type was predominant.Research highlights: T. equi seroprevalence in the area was significantly higher than B. caballi seroprevalence and depends on animal management and environmental factors that affect vector abundance and diversity. Identified risk factors must be considered to improve tick and tick-borne disease control and prevention.

Referencias bibliográficas

  • Abutarbush SM, Alqawasmeh DM, Mukbel, RM, Al-Majali AM, 2012. Equine babesiosis: seroprevalence, risk factors and comparison of different diagnostic methods in Jordan. Transbound Emerg Dis 59: 72-78. https://doi.org/10.1111/j.1865-1682.2011.01244.x
  • Aharonson-Raz K, Rapoport A, Hawari IM, Lensky IM, Berlin D, Zivotofsky D, Klement E, Steinman A, 2014. Novel description of force of infection and risk factors associated with Theileria equi in horses in Israel and in The Palestinian Authority. Ticks Tick Borne Dis 5: 366-372. https://doi.org/10.1016/j.ttbdis.2014.01.002
  • Barandika JF, Olmeda SA, Casado-Nistal MA, Hurtado A, Juste RA, Valcárcel F, Anda P, García-Pérez A, 2011. Differences in questing tick species distribution between atlantic and continental climate regions in Spain. J Med Entomol 48: 13-19. https://doi.org/10.1603/ME10079
  • Bartolomé Del Pino LE, Nardini R, Veneziano V, Iacoponi F, Cersini A, Autorino GL, Buono F, Scicluna MT, 2016. Babesia caballi and Theileria equi infections in horses in Central-Southern Italy: Sero-molecular survey and associated risk factors. Ticks Tick Borne Dis 7: 462-469. https://doi.org/10.1016/j.ttbdis.2016.01.011
  • Camino E, de la Cruz M.L, Dominguez L, Carvajal KA, Fores P, de Juan L, Cruz-Lopez, F, 2018. Epidemiological situation of the exposure to agents causing equine piroplasmosis in Spanish purebred Horses in Spain: seroprevalence and associated risk factors. J Equine Vet Sci 67: 81-86. https://doi.org/10.1016/j.jevs.2018.03.012
  • Camino E, Pozo P, Dorrego A, Carvajal KA, Buendia A, Gonzalez S, de Juan L, Dominguez L, Cruz-Lopez F, 2020. Importance of equine piroplasmosis antibody presence in Spanish horses prior to export. Ticks Tick Borne Dis 11: 101329. https://doi.org/10.1016/j.ttbdis.2019.101329
  • De Waal DT, 1992. Equine piroplasmosis: A review. Br Vet J 148: 6-14. https://doi.org/10.1016/0007-1935(92)90061-5
  • Devleesschauwer B, Torgerson P, Charlier J, Levecke B, Praet N, Dorny P, Berkvens D, Speybroeck N, 2013. Prevalence: Tools for prevalence assessment studies. R package version 0.2.0. http://cran.r-project.org/package=prevalence
  • FAO, 2015. World Reference Base for Soil Resources 2014, Update 2015. World Soil Resources Reports 106, FAO, Rome. ISBN 978-92-5-108369-7
  • García-Bocanegra I, Arenas-Montes A, Hernández E, Adaszek Ł, Carbonero A, Almería S, Jaén-Téllez JA, Gutiérrez-Palomino P, Arenas A, 2013. Seroprevalence and risk factors associated with Babesia caballi and Theileria equi infection in equids. Vet J 195: 172-178. https://doi.org/10.1016/j.tvjl.2012.06.012
  • Gizachew A, Schuster RK, Joseph S, Wernery R, Georgy NA, Elizabeth SK, Asfaw Y, Regassa F, Wernery U, 2013. Piroplasmosis in donkeys: a hematological and serological study in Central Ethiopia. J Equine Vet Sci 33: 18-21. https://doi.org/10.1016/j.jevs.2012.04.003
  • Kouam MK, Kantzoura V, Masuoka PM, Gajadhar A, Theodoropoulos G, 2010. Genetic diversity of equine piroplasms in Greece with a note on speciation within Theileria genotypes (T. equi and T. equi-like). Infect Genet Evol 10: 963-968. https://doi.org/10.1016/j.meegid.2010.06.008
  • Machado RZ, Toledo CZP, Teixeira MC, André MR, Freschi CR, Sampaio PH, 2012. Molecular and serological detection of Theileria equi and Babesia caballi in donkeys (Equus asinus) in Brazil Vet Parasitol 186: 461-465. https://doi.org/10.1016/j.vetpar.2011.11.069
  • MAPA, 2003. El libro blanco de la agricultura y el desarrollo rural. Tomo III. Ministry of Agriculture, Spain. https://www.mapa.gob.es/eu/ministerio/servicios/informacion/cap04_12_t3_tcm35-102688.pdf
  • MAPA, 2018. Equine census. Ministry of Agriculture, Spain. https://www.mapa.gob.es/es/ganaderia/temas/produccion-y-mercados-ganaderos/indicadoreseconomicossectorequino2018comentarios_tcm30-420793.pdf
  • Montes Cortés MG, Fernández-García JL, Habela Martínez-Estéllez MA, 2017. Seroprevalence of Theileria equi and Babesia caballi in horses in Spain. Parasite 24: 14. https://doi.org/10.1051/parasite/2017015
  • Oduori DO, Onyango SC, Kimari JN, MacLeod ET, 2015. A field survey for the seroprevalence of Theileria equi and Babesia caballi in donkeys from Nuu Division, Kenya. Ticks Tick Borne Dis 6: 683-688. https://doi.org/10.1016/j.ttbdis.2015.05.015
  • OIE, 2011. Terrestrial Animal Health Code, 20th edition,
  • Olmeda AS, Bösse R, Ndjeng P, Sanmartín H, Meana A, 2000. Babesiosis equina: serodetección por inmunofluorescencia en animales sintomáticos y clínicamente sanos V Simposium Ibérico sobre Ixodoidea y enfermedades Transmitidas, Madrid (Spain), Sept 27-29. pp: 79-80.
  • Pfäffle M, Littwin N, Muders S V, Petney TN, 2013. The ecology of tick-borne diseases. Int J Parasitol 43: 1059-1077. https://doi.org/10.1016/j.ijpara.2013.06.009
  • Piantedosi D, D'Alessio N, Di Lori, A, Di Prisco F, Mariani U, Neola B, Santoro M, Montagnaro S, Capelli G, Veneziano V, 2014. Seroprevalence and risk factors associated with Babesia caballi and Theileria equi infections in donkeys from Southern Italy. Vet J 202: 578-582. https://doi.org/10.1016/j.tvjl.2014.09.025
  • Ribeiro AJ, Cardoso L, Maia JM, Coutinho T, Cotovio M, 2013. Prevalence of Theileria equi, Babesia caballi, and Anaplasma phagocytophilum in horses from the north of Portugal. Parasitol Res 112: 2611-2617. https://doi.org/10.1007/s00436-013-3429-9
  • Santos TM dos, Roier ECR, Santos HA, Pires MS, Vilela JAR, Moraes LM de B, Almeida FQ de, Baldani CD, Machado RZ, Massard CL, 2011. Factors associated to Theileria equi in equids of two microregions from Rio de Janeiro, Brazil. Rev Bras Parasitol Vet 20: 235-241. https://doi.org/10.1590/S1984-29612011000300011
  • Schwarz A, Maier WA, Kistemann T, Kampen H, 2009. Analysis of the distribution of the tick Ixodes ricinus L. (Acari: Ixodidae) in a nature reserve of western Germany using Geographic Information Systems. Int J Hyg Environ Health 212: 87-96. https://doi.org/10.1016/j.ijheh.2007.12.001
  • Scoles G, Ueti MW, 2015. Vector ecology of equine piroplasmosis. Annu Rev Entomol 60: 561-580. https://doi.org/10.1146/annurev-ento-010814-021110
  • Shchuchinova LD, Kozlova IV, Zlobin VI, 2015. Influence of altitude on tick-borne encephalitis infection risk in the natural foci of the Altai Republic, Southern Siberia. Ticks Tick Borne Dis 6: 322-329. https://doi.org/10.1016/j.ttbdis.2015.02.005
  • Steinman A, Zimmerman T, Klement E, Lensky IM, Berlin D, Gottlieb Y, Baneth G, 2012. Demographic and environmental risk factors for infection by Theileria equi in 590 horses in Israel. Vet Parasitol 187: 558-562. https://doi.org/10.1016/j.vetpar.2012.01.018
  • Sumbria D, Singla LD, Sharma A, Bal MS, Randhawa CS, 2017. Molecular survey in relation to risk factors and haemato-biochemical alteration in Theileria equi infection of equines in Punjab Province India. Vet Parasitol Reg Stud Rep 8: 43-50. https://doi.org/10.1016/j.vprsr.2017.01.009
  • Thrusfield M, 2007. Veterinary Epidemiology, 3rd Ed. Wiley-Blackwell, USA, 624 pp.
  • Vanwambeke SO, Sumilo D, Bormane A, Lambin EF, Randolph SE, 2010. Landscape predictors of tick-borne encephalitis in Latvia: land cover, land use, and land ownership Vector Borne Zoonotic Dis 10: 497-506. https://doi.org/10.1089/vbz.2009.0116
  • Wise LN, Kappmeyer LS, Mealey RH, Knowles DP, 2013. Review of equine piroplasmosis. J Vet Intern Med 27 (6): 1334-1346. https://doi.org/10.1111/jvim.12168
  • Zanet S, Bassano M, Trisciuoglio A, Taricco I, Ferroglio E, 2017. Horses infected by piroplasms different from Babesia caballi and Theileria equi: species identification and risk factors analysis in Italy. Vet Parasitol 236: 38-41. https://doi.org/10.1016/j.vetpar.2017.01.003