Tomografía de coherencia óptica en población pediátricadiferencias con la población adulta y pautas a tener en cuenta a la hora de interpretar los mapas de grosor

  1. Alicia Muñoz Gallego 1
  2. Pilar Tejada Palacios 1
  1. 1 Hospital Universitario 12 de Octubre
    info

    Hospital Universitario 12 de Octubre

    Madrid, España

    ROR https://ror.org/00qyh5r35

Revista:
Acta estrabológica: publicación oficial de la Sociedad Española de Estrabología, Pleóptica, Ortóptica, Visión Binocular, Reeducación y Rehabilitación Visual

ISSN: 0210-4695 1989-7278

Año de publicación: 2020

Volumen: 49

Número: 2

Páginas: 97-106

Tipo: Artículo

Otras publicaciones en: Acta estrabológica: publicación oficial de la Sociedad Española de Estrabología, Pleóptica, Ortóptica, Visión Binocular, Reeducación y Rehabilitación Visual

Resumen

Actualmente, la tomografía de coherencia óptica se ha convertido en una herramienta indispensable en la práctica diaria de la oftalmología pediátrica. Sin embargo, para su correcta interpretación, debemos tener en cuenta que los valores de referencia para los diferentes grosores en niños no son iguales a los adultos. Por ello, para evitar realizar fallos diagnósticos es imprescindible conocer las características especiales de la población pediátrica.

Referencias bibliográficas

  • Muñoz Gallego A, Rodríguez Salgado M, de la Cruz J, López López C, Cañas Zamarra I, Tejada Palacios P. Paediatric optical coherence tomography normative databases: A real need. Arch Soc Espanola Oftalmol. diciembre de 2019; 94(12): 591-597.
  • Huerta Aragonés J, Cela de Julián E. Hematología práctica: interpretación del hemograma y de las pruebas de coagulación. En: AEPap (ed) Curso de Actualización en Pediatría 2018. Lúa Ediciones 3.0; 2018. p. 507-526.
  • Witkin AJ, Ko TH, Fujimoto JG, Chan A, Drexler W, Schuman JS. Ultra-high resolution optical coherence tomography assessment of photoreceptors in retinitis pigmentosa and related diseases. Am J Ophthalmol. diciembre de 2006; 142(6): 945-952.
  • Lim JI, Tan O, Fawzi AA, Hopkins JJ, Gil Flamer JH, Huang D. A pilot study of Fourier-domain optical coherence tomography of retinal dystrophy patients. Am J Ophthalmol. 2008; 146(3): 417-426.
  • Hood DC, Lin CE, Lazow MA, Locke KG, Zhang X, Birch DG. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2009; 50(5): 2328-2336.
  • Thomas MG, Gottlob I. Optical coherence tomography studies provides new insights into diagnosis and prognosis of infantile nystagmus: a review. Strabismus. diciembre de 2012; 20(4): 175-180.
  • Muñoz Gallego A, Torres Peña JL, Rodríguez Salgado M, Ortueta Olartecoechea A, López López C, De la Cruz J. Measurement of macular thickness with optical coherence tomography: impact of using a paediatric reference database and analysis of interocular symmetry. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 29 de agosto de 2020;
  • Barrio Barrio J, Noval S, Galdós M, Ruiz Canela M, Bonet E, Capote M. Multicenter Spanish study of spectral-domain optical coherence tomography in normal children. Acta Ophthalmol (Copenh). 2013; 91(1): e56-63.
  • Chopovska Y, Jaeger M, Rambow R, Lorenz B. Comparison of central retinal thickness in healthy children and adults measured with the Heidelberg Spectralis OCT and the zeiss Stratus OCT 3. Ophthalmol J Int Ophtalmol Int J Ophthalmol Z Für Augenheilkd. 2011; 225(1): 27-36.
  • Molnar A, Holmström G, Larsson E. Macular thickness assessed with spectral domain OCT in a population-based study of children: normative data, repeatability and reproducibility and comparison with time domain OCT. Acta Ophthalmol (Copenh). 2015; 93(5): 470-475.
  • Pérez García D, Ibáñez Alperte J, Remón L, Cristóbal JÁ, Sanchez Cano A, Pinilla I. Study of spectraldomain optical coherence tomography in children: normal values and influence of age, sex, and refractive status. Eur J Ophthalmol. abril de 2016; 26(2): 135-141.
  • Yanni SE, Wang J, Cheng CS, Locke KI, Wen Y, Birch DG. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol. 2013; 155(2): 354-360.e1.
  • Turk A, Ceylan OM, Arici C, Keskin S, Erdurman C, Durukan AH. Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography. Am J Ophthalmol. 2012; 153(3): 552-559.e1.
  • Eriksson U, Holmström G, Alm A, Larsson E. A population-based study of macular thickness in fullterm children assessed with Stratus OCT: normative data and repeatability. Acta Ophthalmol (Copenh). 2009; 87(7): 741-745.
  • Huynh SC, Wang XY, Rochtchina E, Mitchell P. Distribution of macular thickness by optical coherence tomography: findings from a population-based study of 6-year-old children. Invest Ophthalmol Vis Sci. 2006; 47(6): 2351-2357.
  • Queirós T, Freitas C, Guimarães S. Normative Database of Optical Coherence Tomography Parameters in Childhood. Acta Médica Port. 2015; 28(2): 148-157.
  • Read SA, Collins MJ, Vincent SJ, Alonso Caneiro D. Macular retinal layer thickness in childhood. Retina Phila Pa. 2015; 35(6): 1223-1233.
  • Gürağaç FB, Totan Y, Güler E, Tenlik A, Ertuğrul İG. Normative Spectral Domain Optical Coherence Tomography Data in Healthy Turkish Children. Semin Ophthalmol. 2016; 1-7.
  • Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS. Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography. Arch Ophthalmol Chic Ill 1960. 2006; 124(2): 193-198.
  • El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children. Arch Ophthalmol Chic Ill 1960. 2009; 127(1): 50-58.
  • Garcia Martin E, Pinilla I, Idoipe M, Fuertes I, Pueyo V. Intra and interoperator reproducibility of retinal nerve fibre and macular thickness measurements using Cirrus Fourier-domain OCT. Acta Ophthalmol (Copenh). 2011; 89(1): e23-29.
  • Al-Haddad C, Antonios R, Tamim H, Noureddin B. Interocular symmetry in retinal and optic nerve parameters in children as measured by spectral domain optical coherence tomography. Br J Ophthalmol. 2014; 98(4): 502-506.
  • Altemir I, Oros D, Elía N, Polo V, Larrosa JM, Pueyo V. Retinal asymmetry in children measured with optical coherence tomography. Am J Ophthalmol. 2013; 156(6): 1238-1243.e1.
  • Ayala M, Ntoula E. Retinal Fibre Layer Thickness Measurement in Normal Paediatric Population in Sweden Using Optical Coherence Tomography. J Ophthalmol. 2016; 2016: 1-6.
  • Zhu BD, Li SM, Li H, Liu LR, Wang Y, Yang Z. Retinal nerve fiber layer thickness in a population of 12-year-old children in central China measured by iVue-100 spectral-domain optical coherence tomography: the Anyang Childhood Eye Study. Invest Ophthalmol Vis Sci. 2013; 54(13): 8104-8111.
  • Salchow DJ, Oleynikov YS, Chiang MF, KennedySalchow SE, Langton K, Tsai JC. Retinal nerve fiber layer thickness in normal children measured with optical coherence tomography. Ophthalmology. 2006; 113(5): 786-791.
  • Qian J, Wang W, Zhang X, Wang F, Jiang Y, Wang W. Optical coherence tomography measurements of retinal nerve fiber layer thickness in chinese children and teenagers. J Glaucoma. 2011; 20(8): 509-513.
  • Choi SW, Lee SJ. Thickness changes in the fovea and peripapillary retinal nerve fiber layer depend on the degree of myopia. Korean J Ophthalmol KJO. 2006; 20(4): 215-219.
  • Budenz DL, Anderson DR, Varma R, Schuman J, Cantor L, Savell J. Determinants of normal retinal nerve fiber layer thickness measured by Stratus OCT. Ophthalmol. 2007; 114(6): 1046-1052.
  • Cheung CY, Chen D, Wong TY, Tham YC, Wu R, Zheng Y. Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Invest Ophthalmol Vis Sci. 2011; 52(13): 9629-9635.
  • Lee J, Kim NR, Kim H, Han J, Lee ES, Seong GJ. Negative refraction power causes underestimation of peripapillary retinal nerve fibre layer thickness in spectral-domain optical coherence tomography. Br J Ophthalmol. 2011; 95(9): 1284-1289.
  • Huang D, Chopra V, Lu AT, Tan O, Francis B, Varma R. Does Optic Nerve Head Size Variation Affect Circumpapillary Retinal Nerve Fiber Layer Thickness Measurement by Optical Coherence Tomography. 2012; 53(8): 4990-4997.
  • Elía N, Pueyo V, Altemir I, Oros D, Pablo LE. Normal reference ranges of optical coherence tomography parameters in childhood. Br J Ophthalmol. 2012; 96(5): 665-670.
  • Larsson E, Eriksson U, Alm A. Retinal nerve fibre layer thickness in full-term children assessed with Heidelberg retinal tomography and optical coherence tomography: normal values and interocular asymmetry. Acta Ophthalmol (Copenh). 2011; 89(2): 151-158.
  • Tsai DC, Huang N, Hwu JJ, Jueng RN, Chou P. Estimating retinal nerve fiber layer thickness in normal schoolchildren with spectral-domain optical coherence tomography. Jpn J Ophthalmol. 2012; 56(4): 362-370.
  • Ahn HC, Son HW, Kim JS, Lee JH. Quantitative analysis of retinal nerve fiber layer thickness of normal children and adolescents. Korean J Ophthalmol KJO. 2005; 19(3): 195-200.
  • Pawar N, Maheshwari D, Ravindran M, Ramakrishnan R. Interocular symmetry of retinal nerve fiber layer and optic nerve head parameters measured by Cirrus high-definition optical coherence tomography in a normal pediatric population. Indian J Ophthalmol. 2017; 65(10): 955-962.
  • Huynh SC, Wang XY, Burlutsky G, Mitchell P. Symmetry of optical coherence tomography retinal measurements in young children. Am J Ophthalmol. 2007; 143(3): 518-520.
  • Huynh SC, Wang XY, Rochtchina E, Crowston JG, Mitchell P. Distribution of optic disc parameters measured by OCT: findings from a population-based study of 6-year-old Australian children. Invest Ophthalmol Vis Sci. 2006; 47(8): 3276-3285.
  • Huynh SC, Wang XY, Rochtchina E, Mitchell P. Peripapillary retinal nerve fiber layer thickness in a population of 6-year-old children: findings by optical coherence tomography. Ophthalmology. 2006; 113(9): 1583-1592.
  • Huynh SC, Wang XY, Burlutsky G, Rochtchina E, Stapleton F, Mitchell P. Retinal and optic disc findings in adolescence: a population-based OCT study. Invest Ophthalmol Vis Sci. 2008; 49(10): 4328-4335.
  • Dave P, Jethani J, Shah J. Applicability of the ISNT and IST rules on retinal nerve fiber layer measurement on spectral-domain optical coherence tomography in normal Indian children. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Für Klin Exp Ophthalmol. 2015; 253(10): 1795-1799.
  • Rao A, Sahoo B, Kumar M, Varshney G, Kumar R. Retinal nerve fiber layer thickness in children <18 years by spectral-domain optical coherence tomography. Semin Ophthalmol. 2013; 28(2): 97-102.
  • Seibold LK, Mandava N, Kahook MY. Comparison of retinal nerve fiber layer thickness in normal eyes using time-domain and spectral-domain optical coherence tomography. Am J Ophthalmol. 2010; 150(6): 807-814.
  • Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107(5): 453-564.
  • Alamouti B, Funk J. Retinal thickness decreases with age: an OCT study. Br J Ophthalmol. 2003; 87(7): 899-901.
  • Parikh RS, Parikh SR, Sekhar GC, Prabakaran S, Babu JG, Thomas R. Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology. 2007; 114(5): 921-926.
  • Nagai-Kusuhara A, Nakamura M, Fujioka M, Tatsumi Y, Negi A. Association of retinal nerve fibre layer thickness measured by confocal scanning laser ophthalmoscopy and optical coherence tomography with disc size and axial length. Br J Ophthalmol. 2008; 92(2): 186-190.
  • Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol Chic Ill 1960. 1995; 113(5): 586-596.
  • Varma R, Bazzaz S, Lai M. Optical tomographymeasured retinal nerve fiber layer thickness in normal latinos. Invest Ophthalmol Vis Sci. 2003; 44(8): 3369-3373.
  • Balazsi AG, Rootman J, Drance SM, Schulzer M, Douglas GR. The effect of age on the nerve fiber population of the human optic nerve. Am J Ophthalmol. 1984; 97(6): 760-766.
  • Johnson BM, Miao M, Sadun AA. Age-related decline of human optic nerve axon populations. Age. 1987; 10: 5-9.
  • Budenz DL. Symmetry between the right and left eyes of the normal retinal nerve fiber layer measured with optical coherence tomography (an AOS thesis). Trans Am Ophthalmol Soc. 2008; 106: 252-275.
  • Mwanza JC, Durbin MK, Budenz DL, Cirrus OCT Normative Database Study Group. Interocular symmetry in peripapillary retinal nerve fiber layer thickness measured with the Cirrus HD-OCT in healthy eyes. Am J Ophthalmol. 2011; 151(3): 514-521.e1.
  • Fishman RS. Optic disc asymmetry. A sign of ocular hypertension. Arch Ophthalmol Chic Ill 1960. 1970; 84(5): 590-594.
  • Quigley HA, Enger C, Katz J, Sommer A, Scott R, Gilbert D. Risk factors for the development of glaucomatous visual field loss in ocular hypertension. Arch Ophthalmol Chic Ill 1960. 1994; 112(5): 644-649.
  • Ong LS, Mitchell P, Healey PR, Cumming RG. Asymmetry in optic disc parameters: the Blue Mountains Eye Study. Invest Ophthalmol Vis Sci. 1999; 40(5): 849-857.
  • Muñoz Gallego A, De la Cruz J, Rodríguez Salgado M, Torres Peña JL, de Lucas Viejo B, Ortueta Olartecoechea A. Assessment of macular ganglion cell complex using optical coherence tomography: Impact of a paediatric reference database in clinical practice. Clin Experiment Ophthalmol. 2019; 47(4): 490-497.
  • Totan Y, Gürağaç FB, Güler E. Evaluation of the retinal ganglion cell layer thickness in healthy Turkish children. J Glaucoma. 2015; 24(5): e103-108
  • Goh JP, Koh V, Chan YH, Ngo C. Macular Ganglion Cell and Retinal Nerve Fiber Layer Thickness in Children With Refractive Errors-An Optical Coherence Tomography Study. J Glaucoma. 2017; 26(7): 619-625.
  • Zhao Z, Jiang C. Effect of myopia on ganglion cell complex and peripapillary retinal nerve fibre layer measurements: a Fourier-domain optical coherence tomography study of young Chinese persons. Clin Experiment Ophthalmol. 2013; 41(6): 561-566.
  • Jin P, Zou H, Zhu J, Xu X, Jin J, Chang TC. Choroidal and Retinal Thickness in Children With Different Refractive Status Measured by SweptSource Optical Coherence Tomography. Am J Ophthalmol. 2016; 168: 164-176.
  • Totan Y, Gürağaç FB, Güler E. Evaluation of the retinal ganglion cell layer thickness in healthy Turkish children. J Glaucoma. 2015; 24(5): e103-108.
  • Muñoz Gallego A, De la Cruz J, Rodríguez Salgado M, Torres Peña JL, Sambricio J, Ortueta Olartecoechea A. Interobserver reproducibility and interocular symmetry of the macular ganglion cell complex: assessment in healthy children using optical coherence tomography. BMC Ophthalmol. 2020; 20(1): 197.