Nonlinear mean value properties related to the p-Laplacian /

  1. Arroyo Garcia, Angel Rene
Supervised by:
  1. José González Llorente Director

Defence university: Universitat Autònoma de Barcelona

Fecha de defensa: 26 May 2017

Committee:
  1. Jose Luis Fernandez Perez Chair
  2. Albert Clop Secretary
  3. Peter Lindqvist Committee member

Type: Thesis

Teseo: 477013 DIALNET lock_openDDD editor

Abstract

El tema principal de la presente tesis se enmarca en la Teoría Geométrica de Funciones, las Ecuaciones en Derivadas Parciales No Lineales y la Teoría de Juegos. En concreto, la tesis está dedicada al estudio de propiedades del valor medio no lineales relacionadas con el p-laplaciano, ∆_pu = div(|∇u|^{p−2} ∇u), un operador en derivadas parciales definido para 1 < p < ∞ que generaliza el laplaciano usual. Las soluciones débiles del p-laplaciano se conocen como p-armónicas. En particular, si u ∈ C^2 es una función p-armónica, entonces verifica la denominada propiedad del valor medio asintótico para todo x tal que ∇u(x) es distinto de cero. Esta propiedad constituye el punto clave en la conexión entre las propiedades del valor medio no lineales y el p-laplaciano. Por otro lado, de la misma manera en que la propiedad de la media es la base de la interpretación estocástica de las funciones armónicas, recientemente se ha descubierto una conexión entre propiedades del valor medio no lineales asociadas al p-laplaciano y ciertos juegos estocásticos, conocidos como tug-of-war games. Tales juegos pueden entenderse como una generalización del concepto de random walk, un análogo discreto del movimiento Browniano.