The effects of climate change on the flowering phenology of alder trees in southwestern Europe

  1. Rojo, Jesús 1
  2. Fernández-González, Federico 1
  3. Lara, Beatriz 1
  4. Bouso, Verónica 1
  5. Crespo, Guillermo 1
  6. Hernández-Palacios, Gonzalo 1
  7. Rodríguez-Rojo, María Pilar 1
  8. Rodríguez-Torres, Alfonso 1
  9. Smith, Matt 2
  10. Pérez-Badia, Rosa 1
  1. 1 University of Castilla-La Mancha
  2. 2 University of Worcester
    info

    University of Worcester

    Worcester, Reino Unido

    ROR https://ror.org/00v6s9648

Revista:
Mediterranean Botany

ISSN: 2603-9109

Año de publicación: 2021

Volumen: 42

Tipo: Artículo

DOI: 10.5209/MBOT.67360 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Mediterranean Botany

Resumen

Global warming impacts plant phenology and the effect of climate change will be more intensely experienced at the edges of a plant's distribution. This work focuses on Iberian alder's climatic range (Alnus lusitanica Vít, Douda & Mandák). The Iberian Peninsula constitutes the Southwestern edge of the global chorological distribution of European black alder (Alnus glutinosa (L.) Gaertn. s.l.), and some of the warmest and driest conditions for the alder population are located in the center of Spain. The critical temperature-relevant periods that regulate the reproductive phenology of alder were analyzed using a statistical-based method for modeling chilling and forcing accumulation periods in temperate trees. Our results reveal that autumn chilling was the most important thermal accumulation period for alder in a Mediterranean climate while forcing requirements are satisfied in a short period of time. Autumn temperatures were significantly correlated with the timing of flowering, and chill units during this season directly influence start-dates of alder flowering. A positive trend was observed in pollen seasons' timing, meaning a slight delay of alder flowering in central Spain. It coincided with autumn warming during the period 2004-2018. If this warming trend continues, our results predict a delay in the start-date of flowering by around 3-days for every degree increase in maximum autumn temperatures according to the most optimistic emission scenarios.

Referencias bibliográficas

  • Aguayo, J., Elegbede, F., Husson, C., Saintonge, F.-X. & Marçais, B. 2014. Modeling climate impact on an emerging disease, the Phytophthora alni -induced alder decline. Glob. Change Biol. 20: 3209–3221. doi: 10.1111/gcb.12601
  • Attorre, F., Alfò, M., De Sanctis, M., Francesconi, F., Valenti, R., Vitale, M. & Bruno, F. 2011. Evaluating the effects of climate change on tree species abundance and distribution in the Italian peninsula. Appl. Veg. Sci. 14: 242–255. doi: 10.1111/j.1654-109X.2010.01114.x
  • Benmoussa, H., Ghrab, M., Ben Mimoun, M. & Luedeling, E. 2017. Chilling and heat requirements for local and foreign almond (Prunus dulcis Mill.) cultivars in a warm Mediterranean location based on 30 years of phenology records. Agric. For. Meteorol. 239: 34–46. doi: 10.1016/j.agrformet.2017.02.030
  • Biedermann, T., Winther, L., Till, S.J., Panzner, P., Knulst, A. & Valovirta, E. 2019. Birch pollen allergy in Europe. Allergy all.13758. doi: 10.1111/all.13758
  • Biurrun, I., Campos, J.A., García-Mijangos, I., Herrera, M. & Loidi, J. 2016. Floodplain forests of the Iberian Peninsula: Vegetation classification and climatic features. Appl. Veg. Sci. 19: 336–354. doi: 10.1111/avsc.12219
  • Campoy, J.A., Ruiz, D. & Egea, J. 2011. Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 130: 357–372. doi: 10.1016/j.scienta.2011.07.011
  • Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. 2017. Chorological maps for the main European woody species. Data Brief 12, 662–666. doi: 10.1016/j.dib.2017.05.007
  • Chuine, I. 2010. Why does phenology drive species distribution? Philos. Trans. R. Soc. B Biol. Sci. 365: 3149–3160. doi: 10.1098/rstb.2010.0142
  • Cramer, W., Guiot, J., Fader, M., Garrabou, J., Gattuso, J.P., Iglesias, A., Lange, M.A., Lionello, P., Llasat, M.C., Paz, S., Peñuelas, J., Snoussi, M., Toreti, A., Tsimplis, M.N. & Xoplaki, E. 2018. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8: 972–980. doi: 10.1038/s41558-018-0299-2
  • Dąbrowska, A., Kaszewski, B.M. 2012. The relationship between flowering phenology and pollen seasons of Alnus Miller. Acta Agrobot. 65: 57–66. doi: 10.5586/aa.2012.058
  • Darbyshire, R., Webb, L., Goodwin, I., Barlow, S. 2011. Winter chilling trends for deciduous fruit trees in Australia. Agric. For. Meteorol. 151: 1074–1085. doi: 10.1016/j.agrformet.2011.03.010
  • De Kort, H., Vander Mijnsbrugge, K., Vandepitte, K., Mergeay, J., Ovaskainen, O. & Honnay, O. 2016. Evolution, plasticity and evolving plasticity of phenology in the tree species Alnus glutinosa. J. Evol. Biol. 29: 253–264. doi: 10.1111/jeb.12777
  • Dewald, L. & Steiner, K. 1986. Phenology, height increment, and cold tolerance of Alnus glutinosa populations in a common environment. Silvae Genet. 35: 205–211.
  • Donmez, C., Berberoglu, S., Cilek, A. & Evrendilek, F. 2016. Spatiotemporal Modeling of Net Primary Productivity of Eastern Mediterranean Biomes under Different Regional Climate Change Scenarios. Int. J. Environ. Res. 10(2): 341–356. doi: 10.22059/ijer.2016.57814
  • Douda, J., Boublík, K., Slezák, M., Biurrun, I., Nociar, J., Havrdová, A., Doudová, J., Aćić, S., Brisse, H., Brunet, J., Chytrý, M., Claessens, H., Csiky, J., Didukh, Y., Dimopoulos, P., Dullinger, S., FitzPatrick, Ú., Guisan, A., Horchler, P.J., Hrivnák, R., Jandt, U., Kącki, Z., Kevey, B., Landucci, F., Lecomte, H., Lenoir, J., Paal, J., Paternoster, D., Pauli, H., Pielech, R., Rodwell, J.S., Roelandt, B., Svenning, J.C., Šibík, J., Šilc, U., Škvorc, Ž., Tsiripidis, I., Tzonev, R.T., Wohlgemuth, T. & Zimmermann, N.E. 2016. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl. Veg. Sci. 19, 147–163. doi: 10.1111/avsc.12201
  • Douda, J., Doudová, J., Drašnarová, A., Kuneš, P., Hadincová, V., Krak, K., Zákravský, P. & Mandák, B. 2014. Migration Patterns of Subgenus Alnus in Europe since the Last Glacial Maximum: A Systematic Review. PLoS ONE 9: e88709. doi: 10.1371/journal.pone.0088709
  • Emberlin, J., Smith, M., Close, R. & Adams-Groom, B. 2006. Changes in the pollen seasons of the early flowering trees Alnus spp. and Corylus spp. in Worcester, United Kingdom, 1996–2005. Int. J. Biometeorol. 51: 181–191. doi: 10.1007/s00484-006-0059-2
  • Fernández-González, F., Loidi, J., Moreno Saiz, J.C., Del Arco, M. & Fernández-Cancio, A. 2005. Impactos sobre la biodiversidad vegetal. In: Moreno Rodríguez, J.M. (Coord.). Evaluación Preliminar de Los Impactos En España Por Efecto Del Cambio Climático. Pp. 183–247. Min. Med. Amb., Madrid.
  • Fernández-González, F., Pérez-Badia, R., Bouso, V., Crespo, G., Rodríguez Rojo, M.P., Rodríguez-Torres, A., Rojo, J. & Sardinero, S. 2012. Síntesis de la vegetación de la provincia de Toledo. In: Fernández-González, F. & Pérez-Badia, R. (Eds.). Avances En El Conocimiento de La Vegetación. XXIII Jorn. Int. Fitosociología. Libro de Actas. Pp. 97–160. Ed. Univ. Castilla-La Mancha.
  • Fick, S.E. & Hijmans, R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37: 4302–4315. doi: 10.1002/joc.5086
  • Fishman, S., Erez, A., Couvillon, G.A. 1987. The temperature dependence of dormancy breaking in plants: Mathematical analysis of a two-step model involving a cooperative transition. J. Theor. Biol. 124: 473–483. doi: 10.1016/S0022-5193(87)80221-7
  • Fu, Y.H., Geng, X., Hao, F., Vitasse, Y., Zohner, C.M., Zhang, X., Zhou, X., Yin, G., Peñuelas, J., Piao, S., Janssens, I.A. 2019. Shortened temperature‐relevant period of spring leaf‐out in temperate‐zone trees. Glob. Change Biol. 25: 4282–4290. doi: 10.1111/gcb.14782
  • Fu, Y.H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., Ciais, P., Huang, M., Menzel, A., Peñuelas, J., Song, Y., Vitasse, Y., Zeng, Z., Janssens, I.A., 2015. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526: 104–107. doi: 10.1038/nature15402
  • Garcia, R.A., Cabeza, M., Rahbek, C., Araujo, M.B. 2014. Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science 344: 1247579–1247579. doi: 10.1126/science.1247579
  • García-Madrid, A.S., Rodríguez-Rojo, M.P., Cantó, P., Molina, J.A. 2016. Diversity and classification of tall humid herb grasslands (Molinio-Holoschoenion) in Western Mediterranean Europe. Appl. Veg. Sci. 19: 736–749. doi: 10.1111/avsc.12249
  • García-Mozo, H., Mestre, A., Galán, C. 2010. Phenological trends in southern Spain: a response to climate change. Agric. For. Meteorol. 150: 575–580.
  • Gómez-Cantero, J., Rodríguez-Torres, A., Bustillo, E., Rodríguez-Bustamante, P. (Coords.). 2018. Estudio sobre efectos constatados y percepción del cambio climático en el medio rural de Castilla-La Mancha. Propuestas de medidas de adaptación. Segundo informe. Cons. Agric., Med. Amb. Des. Rur. Castilla-La Mancha. Junta Com. Castilla-La Mancha.
  • González, E., Felipe-Lucia, M.R., Bourgeois, B., Boz, B., Nilsson, C., Palmer, G. & Sher, A.A. 2017. Integrative conservation of riparian zones. Biol. Conserv. 211: 20–29. doi: 10.1016/j.biocon.2016.10.035
  • González-Parrado, Z., Fuertes-Rodríguez, C.R., Vega-Maray, A.M., Valencia-Barrera, R.M., Rodríguez-Rajo, F.J. & Fernández-González, D. 2006. Chilling and heat requirements for the prediction of the beginning of the pollen season of Alnus glutinosa (L.) Gaertner in Ponferrada (León, Spain). Aerobiologia 22: 47–53. doi: 10.1007/s10453-005-9008-5
  • Gordo, O. & Sanz, J.J. 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Glob. Change Biol. 16: 1082–1106. doi: 10.1111/j.1365-2486.2009.02084.x
  • Guiot, J. & Cramer, W. 2016. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems. Science 354: 465–468. doi: 10.1126/science.aah5015
  • Hampe, A. & Petit, R.J. 2005. Conserving biodiversity under climate change: the rear edge matters: Rear edges and climate change. Ecol. Lett. 8: 461–467. doi: 10.1111/j.1461-0248.2005.00739.x
  • Haque, M.M.U., Casero, J.J.D. 2012. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. For. Syst. 21: 313–322. doi: 10.5424/fs/2012212-02267
  • Hemery, G.E. & Clark, J.R., Aldinger, E., Claessens, H., Malvolti, M.E., O'Connor, E., Raftoyannis, Y., Savill, P.S. & Brus, R. 2010. Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83: 65–81. doi: 10.1093/forestry/cpp034
  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25: 1965–1978. doi: 10.1002/joc.1276
  • Houston-Durrant, T., de Rigo, D. & Caudullo, G. 2016. Alnus glutinosa in Europe: distribution, habitat, usage and threats, in: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T. &, Mauri, A. (Eds.). European Atlas of Forest Tree Species. Pp. 64–65. Eur. Comm., Luxenbourg.
  • Jäger, S., Nilsson, S., Berggren, B., Pessi, A.M., Helander, M. & Ramfjord, H. 1996. Trends of some airborne tree pollen in the Nordic countries and Austria, 1980–1993: A comparison between Stockholm, Trondheim, Turku and Vienna. Grana 35: 171–178. doi: 10.1080/00173139609429078
  • Jato, M.V., Rodríguez-Rajo, F.J., Aira, M.J., Tedeschini, E. & Frenguelli, G. 2013. Differences in atmospheric trees pollen seasons in winter, spring and summer in two European geographic areas, Spain and Italy. Aerobiologia 29: 263–278. doi: 10.1007/s10453-012-9278-7
  • Jochner, S., Sparks, T.H., Laube, J. & Menzel, A. 2016. Can we detect a nonlinear response to temperature in European plant phenology? Int. J. Biometeorol. 60: 1551–1561. doi: 10.1007/s00484-016-1146-7
  • Kamocki, A.K., Banaszuk, P. & Kołos, A. 2018. Removal of European alder Alnus glutinosa -An active method of mire conservation. Ecol. Eng. 111: 44–50. doi: 10.1016/j.ecoleng.2017.11.014
  • Kasprzyk, I. 2003. Flowering phenology and airborne pollen grains of chosen tree taxa in Rzeszów (SE Poland). Aerobiologia 19: 113–120. doi: 10.1023/A:1024406819444
  • Lang, G.A. 1987. Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. HortScience 22: 371–377.
  • Lepais, O., Muller, S.D., Ben Saad-Limam, S., Benslama, M., Rhazi, L., Belouahem-Abed, D., Daoud-Bouattour, A., Gammar, A.M., Ghrabi-Gammar, Z. & Bacles, C.F.E. 2013. High Genetic Diversity and Distinctiveness of Rear-Edge Climate Relicts Maintained by Ancient Tetraploidisation for Alnus glutinosa. PLoS ONE 8: e75029. doi: 10.1371/journal.pone.0075029
  • Levin, D.A. 2006. Flowering Phenology in Relation to Adaptive Radiation. Syst. Bot. 31: 239–246.
  • Lind, T., Ekebom, A., Alm Kübler, K., Östensson, P., Bellander, T. & Lõhmus, M. 2016. Pollen Season Trends (1973-2013) in Stockholm Area, Sweden. PLoS ONE 11: e0166887. doi: 10.1371/journal.pone.0166887
  • Linkosalo, T., Le Tortorec, E., Prank, M., Pessi, A.M. & Saarto, A. 2017. Alder pollen in Finland ripens after a short exposure to warm days in early spring, showing biennial variation in the onset of pollen ripening. Agric. For. Meteorol. 247: 408–413. doi: 10.1016/j.agrformet.2017.08.030
  • Luedeling, E. & Gassner, A. 2012. Partial Least Squares Regression for analyzing walnut phenology in California. Agric. For. Meteorol. 158–159: 43–52. doi: 10.1016/j.agrformet.2011.10.020
  • Luedeling, E., Girvetz, E.H., Semenov, M.A. & Brown, P.H. 2011. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees. PLoS ONE 6: e20155. doi: 10.1371/journal.pone.0020155
  • Luedeling, E., Kunz, A. & Blanke, M.M. 2013. Identification of chilling and heat requirements of cherry trees - a statistical approach. Int. J. Biometeorol. 57: 679–689. doi: 10.1007/s00484-012-0594-y
  • Lytle, D.A., Merritt, D.M., Tonkin, J.D., Olden, J.D. & Reynolds, L.V. 2017. Linking river flow regimes to riparian plant guilds: a community-wide modeling approach. Ecol. Appl. 27: 1338–1350. doi: 10.1002/eap.1528
  • Ma, Q., Huang, J.G., Hänninen, H. & Berninger, F. 2018. Reduced geographical variability in spring phenology of temperate trees with recent warming. Agric. For. Meteorol. 256–257: 526–533. doi: 10.1016/j.agrformet.2018.04.012
  • Malkiewicz, M., Drzeniecka-Osiadacz, A. & Krynicka, J. 2016. The dynamics of the Corylus, Alnus, and Betula pollen seasons in the context of climate change (SW Poland). Sci. Total Environ. 573: 740–750. doi: 10.1016/j.scitotenv.2016.08.103
  • Martínez-Lüscher, J., Kizildeniz, T., Vučetić, V., Dai, Z., Luedeling, E., van Leeuwen, C., Gomès, E., Pascual, I., Irigoyen, J.J., Morales, F. & Delrot, S. 2016. Sensitivity of Grapevine Phenology to Water Availability, Temperature and CO2 Concentration. Front. Environ. Sci. 4: 48. doi: 10.3389/fenvs.2016.00048
  • Martín-Herrero, J., Cirujano, S., Moreno-Pérez, M., Peris, J.B. & Stübing, G. 2003. La Vegetación Protegida en Castilla-La Mancha. Descripción, ecología y conservación de los Hábitat de Protección Especial. Junta de Comunidades de Castilla-La Mancha, Madrid.
  • McVean, D.N. 1953. Alnus glutinosa (L.) Gaertn. J. Ecol. 41: 447. doi: 10.2307/2257070
  • Morin, X., Lechowicz, M.J., Augspurger, C., O'Keefe, J., Viner, D. & Chuine, I. 2009. Leaf phenology in 22 North American tree species during the 21st century. Glob. Change Biol. 15: 961–975. doi: 10.1111/j.1365-2486.2008.01735.x
  • Morin, X., Roy, J., Sonié, L. & Chuine, I. 2010. Changes in leaf phenology of three European oak species in response to experimental climate change. New Phytol. 186: 900–910. doi: 10.1111/j.1469-8137.2010.03252.x
  • Ninyerola, M., Pons, X. & Roure, J.M. 2005. Atlas climático digital de la Península Ibérica. Metodología y aplicaciones en bioclimatología y geobotánica. Univ. Aut. Barcelona, Bellaterra.
  • Novara, C., Falzoi, S., La Morgia, V., Spanna, F. & Siniscalco, C. 2016. Modelling the pollen season start in Corylus avellana and Alnus glutinosa. Aerobiologia 32: 555–569. doi: 10.1007/s10453-016-9432-8
  • Osborne, C.P., Mitchell, P.L., Sheehy, J.E. & Woodward, F.I. 2000. Modelling the recent historical impacts of atmospheric CO2 and climate change on Mediterranean vegetation. Glob. Change Biol. 6: 445–458. doi: 10.1046/j.1365-2486.2000.00336.x
  • Pachauri, R.K. & Meyer, L.A. (Eds.). 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva.
  • Palmer, M.A., Reidy Liermann, C.A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P.S. & Bond, N. 2008. Climate change and the world's river basins: anticipating management options. Front. Ecol. Environ. 6: 81–89. doi: 10.1890/060148
  • Peaucelle, M., Janssens, I.A., Stocker, B.D., Ferrando, A.D., Fu, Y.H., Molowny-Horas, R., Ciais, P. & Peñuelas, J. 2019. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10: 1–10.
  • Peñuelas, J., Lloret, F. & Montoya, R. 2001. Severe Drought Effects on Mediterranean Woody Flora in Spain. For. Sci. 47: 214–218. doi: 10.1093/forestscience/47.2.214
  • Pérez Latorre, A.V., Pavón Núñez, M. & Hidalgo Triana, N. 2011. Sobre las alisedas nevadenses (Sierra Nevada, Granada-Almería, España). Lagascalia 31 161-174.
  • Picornell, A., Buters, J., Rojo, J., Traidl-Hoffmann, C., Damialis, A., Menzel, A., Bergmann, K.C., Werchan, M., Schmidt-Weber, C. & Oteros, J. 2019. Predicting the start, peak and end of the Betula pollen season in Bavaria, Germany. Sci. Total Environ. 690: 1299–1309. doi: 10.1016/j.scitotenv.2019.06.485
  • Pironon, S., Papuga, G., Villellas, J., Angert, A.L., García, M.B. & Thompson, J.D. 2017. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909. doi: 10.1111/brv.12313
  • Rivas-Martínez, S., Rivas-Sáenz, S. & Penas, A. 2011. Worldwide bioclimatic classfication system. Glob. Geobot. 1, 1–634.
  • Rodríguez-Rajo, F.J., Aira, M.J., Fernández-González, M., Seijo, C. & Jato, V. 2011. Recent trends in airborne pollen for tree species in Galicia, NW Spain. Clim. Res. 48: 281–291.
  • Rodríguez-Rajo, F.J., Fernández-González, M.D., Vega-Maray, A.M., Suárez, F.J., Valencia-Barrera, R.M. & Jato, V. 2006. Biometeorological characterization of the winter in north-west Spain based on Alnus pollen flowering. Grana 45: 288–296.
  • Rodríguez-Rojo, M.P. & Fernández-González, F. 2014. Diversity Patterns and Typology of Cynosurus cristatus Grasslands (Cynosurion cristati Tüxen 1947) in the Iberian Peninsula. Folia Geobot. 49: 461–485. doi: 10.1007/s12224-014-9191-7
  • Rojo, J. & Pérez-Badia, R. 2014. Effects of topography and crown-exposure on olive tree phenology. Trees 28: 449–459. doi: 10.1007/s00468-013-0962-1
  • Rojo, J., Picornell, A. & Oteros, J. 2019. AeRobiology: The computational tool for biological data in the air. Methods Ecol. Evol. 10: 1371–1376. doi: 10.1111/2041-210X.13203
  • Rojo, J., Serrano-Bravo, M.D., Lara, B., Fernández-González, F. & Pérez-Badia, R. 2019. Halo-nitrophilous scrub species and their relationship to the atmospheric concentration of allergenic pollen: case study of the Mediterranean saltbush (Atriplex halimus L., Amaranthaceae). Plant Biosyst. 153: 98–107. doi: 10.1080/11263504.2018.1461699
  • Salazar, C., Lorite, J., Fuentes, A.G., Torres, J.A., Cano, E. & Valle, F. 2001. A phytosociological study of the hygrophilous vegetation of Sierra Nevada (Southern Spain). Stud. Geobot. 20: 17–32.
  • Salinas, M.J., Blanca, G. & Romero, A.T. 2000. Evaluating riparian vegetation in semi-arid Mediterranean watercourses in the south-eastern Iberian Peninsula. Environ. Conserv. 27: 24–35. doi: 10.1017/S0376892900000047
  • Skjøth, C.A., Ørby, P.V., Becker, T., Geels, C., Schlünssen, V., Sigsgaard, T., Bønløkke, J.H., Sommer, J., Søgaard, P. & Hertel, O. 2013. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 10: 541–554.
  • Smith, M., Jäger, S., Berger, U., Šikoparija, B., Hallsdottir, M., Sauliene, I., Bergmann, K.C., Pashley, C.H., de Weger, L., Majkowska-Wojciechowska, B., Rybníček, O., Thibaudon, M., Gehrig, R., Bonini, M., Yankova, R., Damialis, A., Vokou, D., Gutiérrez Bustillo, A.M., Hoffmann-Sommergruber, K. & van Ree, R. 2014. Geographic and temporal variations in pollen exposure across Europe. Allergy 69: 913–923. doi: 10.1111/all.12419
  • Spanish Meteorological Agency, 2020. Climate projections for the 21st century. http://www.aemet.es/en/serviciosclimaticos/cambio_climat [accessed: 25.05.20].
  • Thuiller, W., Lavorel, S., Midgley, G., Lavergne, S. & Rebelo, T. 2004. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology 85: 1688–1699. doi: 10.1890/03-0148
  • Turchina, T.A. 2019. Phenospectrum of Black Alder (Alnus glutinosa Gaertn.) Plants in Ecotopes of the Central Part of Steppe Zone of European Russia. Arid Ecosyst. 9: 15–25. doi: 10.1134/S2079096119010104
  • van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J. & Rose, S.K. 2011. The representative concentration pathways: an overview. Clim. Change 109: 5–31. doi: 10.1007/s10584-011-0148-z
  • Vilà-Cabrera, A., Premoli, A.C. & Jump, A.S. 2019. Refining predictions of population decline at species' rear edges. Glob. Change Biol. 25, 1549–1560. doi: 10.1111/gcb.14597
  • Vít, P., Douda, J., Krak, K., Havrdová, A., Mandák, B. 2017. Two new polyploid species closely related to Alnus glutinosa in Europe and North Africa – An analysis based on morphometry, karyology, flow cytometry and microsatellites. Taxon 66: 567–583. doi: 10.12705/663.4
  • Spanish Meteorological Agency, 2020. Climate projections for the 21st century. http://www.aemet.es/en/serviciosclimaticos/cambio_climat [accessed: 25.05.20].