Isotopic and geochemical record of the active to passive margin transition in NW Iberia during the Cambrian-Ordovicianvestiges of a waning continental arc

  1. Pilar Andonaegui 1
  2. Rubén Díez Fernández 2
  3. Jacobo Abati 1
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Instituto Geológico y Minero de España
    info

    Instituto Geológico y Minero de España

    Madrid, España

    ROR https://ror.org/04cadha73

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Título del ejemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volumen: 47

Número: 1-2

Páginas: 323-346

Tipo: Artículo

DOI: 10.1007/S41513-020-00155-8 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

Los datos geoquímicos de los ortogneises de las Unidades Basales de los Complejos Alóctonos del NW del Macizo Ibérico, permiten seguir a lo largo del tiempo los cambios producidos en la composición de los magmas generados en una zona de subducción relacionada con un margen continental, la cual evoluciona desde la construcción de un arco volcánico hasta su desmantelamiento durante un episodio de rifting. Las Unidades Basales se interpretan como una sección periférica del margen Norte Africano de Gondwana y registran un magmatismo de arco volcánico de edad Neoproterozoica a Cámbrica, seguido por un episodio de rifting Cambro-Ordovícico. Las rocas intrusivas de las Unidades Basales, conservadas como ortogneises, se pueden agrupar en dos suites magmáticas: una calco-alcalina (c. 493-475 Ma) y otra que varía de alcalina a per-alcalina (c. 475-470 Ma). La asociación calco-alcalina tiene una composición química que varía de tipos meta-alumínicos magnésico cálcicos a ferro calco-alcalinos y tipos peralumínicos alcalino-cálcicos. Los metagranitos de la asociación moderadamente alcalina se clasifican como ferro alcalinos meta-alumínicos a per-alumínicos, y los per-alcalinos son ferro alcalinos a alcalino- cálcicos de per-alcalinos a moderadamente per-alumínicos. Las características químicas de las rocas metaígneas de las Unidades Basales indican que los términos más antiguos de la suite calco-alcalina (tonalitas y granodioritas) se formaron en un arco continental, mientras que las rocas alcalinas y per-alcalinas se generaron en un contexto extensional intraplaca. Los valores negativos de ƐNd (-7.8 a -1.5) de la serie calco-alcalina sugieren una influencia cortical en su génesis. En los ortogneises alcalinos los valores de ƐNd varían entre -2.0 y 2.2, siendo siempre positivos en el grupo de ortogneises peralcalinos, lo cual sugiere una mayor participación de un componente mantélico en los magmas de los que proceden. La transición de la suite calco-alcalina a la suite alcalina está representada por los granitos alcalinos, estos son coetáneos con la intrusión de magmas básicos que probablemente derivan de un magma mantélico estancado en la base de la corteza que provocó el episodio de rifting después del cese del magmatismo de arco continental durante el Ordovícico.

Información de financiación

Referencias bibliográficas

  • Abati, J., Dunning, G. R., Arenas, R., Díaz García, F., González Cuadra, P., Martínez Catalán, J. R., & Andonaegui, P. (1999). Early Ordovician orogenic event in Galicia (NW Spain): evidence from U–Pb ages in the uppermost unit of the Ordenes Complex. Earth and Planetary Science Letters, 165, 213–228. https ://doi. org/10.1016/S0012 -821X(98)00268 -4.
  • Abati, J., Arenas, R., Martínez Catalán, J. R., & Díaz García, F. (2003). Anticlockwise P-T path of granulites from the Monte Castelo Gabbro (Órdenes Complex, NW Spain). Journal of Petrology, 44(2), 305–327. https ://doi.org/10.1093/petro logy/44.2.305.
  • Abati, J., Gerdes, A., Fernández-Suárez, J., Arenas, R., Whitehouse, M. J., & Díez Fernández, R. (2010). Magmatism and early-Variscan continental subduction in the northern Gondwana margin recorded in zircons from the basal units of Galicia, NW Spain. Geological Society of America Bulletin, 122, 219–235. https ://doi. org/10.1130/B2657 2.1.
  • Andonaegui, P., Castiñeiras, P., González Cuadra, P., Arenas, R., Sánchez Martínez, S., Abati, J., et al. (2012). The Corredoiras orthogneiss (NW Iberian Massif): Geochemistry and geochronology of the Paleozoic magmatic suite developed in a peri-Gondwanan arc. Lithos, 128–131, 84–99. https ://doi.org/10.1016/j.litho s/2011.11.005.
  • Andonaegui, P., Arenas, R., Albert, R., Sánchez Martínez, S., Díez Fernández, R., & Gerdes, A. (2016). The last stages of the Avalonian- Cadomian arc in NW Iberian Massif: Isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc. Tectonophysics, 681, 6–14. https ://doi.org/10.1016/j.tecto /2016.02.032.
  • Andonaegui, P., Abati, J., & Díez Fernández, R. (2017). Late Cambrian magmatic arc activity in peri-Gondwana: geochemical evidence from metagranitoid rocks of the Basal Allocthonous Units of NW Iberia. Geologica Acta, 15(4), 305–321. https ://doi.org/10.1344/ Geolo gicaA cta20 17.15.4.4.
  • Arenas, R., Martínez Catalán, J. R., Sánchez Martínez, S., Fernández- Suárez, J., Andonaegui, P., Pearce, J. A., & Corfú, F. (2007). The Vila de Cruces ophiolite: a remnant of the early Rheic Ocean in the Variscan suture of Galicia (northwest Iberian Massif). The Journal of Geology, 115, 129–148. https ://doi.org/10.1086/51064 5.
  • Arenas, R., & Sánchez Martínez, S. (2015). Variscan ophiolites in NW Iberia: Tracking lost Paleozoic oceans and the assembly of Pangea. Episodes, 38(4), 315–333. https ://doi.org/10.18814 /epiiu gs/2015/v38i4 /82427 .
  • Arenas, R., Sánchez Martínez, S., Díez Fernández, R., Gerdes, A., Abati, J., Fernández-Suárez, J., et al. (2016). Allochthonous terranes involved in the Variscan suture of Galicia (NW Iberia): A review of their origin and tectonothermal evolution. Earth Science Reviews, 161, 140–178. https ://doi.org/10.1016/j.earsc irev.2016.08.010.
  • Arenas, R., Fernández-Suárez, J., Montero, P., Díez Fernández, R., Andonaegui, P., Sánchez Martínez, S., et al. (2018). The Calzadilla Ophiolite (SW Iberia) and the Ediacaran fore-arc evolution of the African margin of Gondwana. Gondwana Research, 58, 71–86. https ://doi.org/10.1016/j.gr.2018.01.015.
  • Bonin, B. (1990). From orogenic to anorogenic settings. Evolution of granitoid suites after a major orogenesis. Geological Journal, 25, 261–270. https ://doi.org/10.1002/gj.33502 50309 .
  • Bonin, B., Azzouni-Sekkal, A., Bussy, F., & Ferrag, S. (1998). Alkalicalcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodinamic settings. Lithos, 45, 45–70. https ://doi.org/10.1016/S0024 -4397(98)00025 -5.
  • DePaolo, D. J. (1981). Neodymiun isotopes in the Colorado Front range and crust–mantle evolution in the Proterozoic. Nature, 291, 193– 196. https ://doi.org/10.1038/29119 3a0.
  • Díez Fernández, R., & Martínez Catalán, J. R. (2009). 3D Analysis of an Ordovician igneous ensemble: a complex magmatic structure hidden in a polydeformed allochthonous Variscan unit. Journal of Structural Geology, 31, 222–236. https ://doi.org/10.1016/j. jsg.2008.11.017.
  • Díez Fernández, R., Martínez Catalán, J. R., Gerdes, A., Abati, J., Arenas, R., & Fernández-Suárez, J. (2010). U–Pb ages of detrital zircons from the Basal allochthonous units of NW Iberia: Provenance and paleoposition on the northern margin of Gondwana during the Neoproterozoic and Paleozoic. Gondwana Research, 18, 385–399. https ://doi.org/10.1016/j.gr.2009.12.006.
  • Díez Fernández, R. (2011). Evolución estructural y cinemática de una corteza continental subducida: la Unidad de Malpica-Tui (NO del Macizo Ibérico). Nova Terra, 40, 1–228.
  • Díez Fernández, R., Martínez Catalán, J. R., Arenas, R., & Abati, J. (2011). Tectonic evolution of a continental subduction-exhumation channel: Variscan structure of the basal allochthonous units in NW Spain. Tectonics, 30, TC3009. https ://doi.org/10.1029/2010T C0028 50.
  • Díez Fernández, R., Castiñeiras, P., & Gómez Barreiro, J. (2012). Age constraints on Lower Paleozoic convection system: magmatic events in the NW Iberian Gondwana margin. Gondwana Research, 21, 1066–1079. https ://doi.org/10.1016/j.gr.2011.07.028.
  • Díez Fernández, R., & Arenas, R. (2015). The Late Devonian Variscan suture of the Iberian Massif: a correlation of high-pressure belts in NW and SW Iberia. Tectonophysics, 654, 96–100. https ://doi.org/10.1016/j.tecto .2015.05.001.
  • Díez Fernández, R., Arenas, R., Pereira, M. F., Sánchez-Martínez, S., Albert, R., Martín Parra, L. M., et al. (2016). Tectonic evolution of Variscan Iberia: Gondwana Laurussia collision revisited. Earth Science Reviews, 162, 269–292. https ://doi.org/10.1016/ jears cirev .2016.08.002.
  • Díez Fernández, R., Jiménez-Díaz, A., Arenas, R., Pereira, M. F., & Fernández-Suárez, J. (2019). Ediacaran obduction of a Fore-arc Ophiolite in SW Iberia: a turning point in the evolving geodynamic setting of Peri-Gondwana. Tectonics, 38, 95–119. https ://doi.org/10.1029/2018T C0052 24.
  • Díez Montes, A., Martínez Catalán, J. R., & Bellido Mulas, F. (2010). Role of the Ollo de Sapo massive felsic volcanism of NW Iberia in the Early Ordovician dynamics of northern Gondwana. Gondwana Research, 17, 363–376. https ://doi. org/10.1016/j.gr.2009.09.001.
  • Eby, G. N. (1990). The A-type granitoids. A review of their ocurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26, 115–134. https ://doi.org/10.1016/0024-4937(90)90043 -Z.
  • Eby, G. N. (1992). Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology, 20, 641–644. https ://doi.org/10.1130/0091-7613(1992)020%3c064 1:CSOTA T%3e2.3.CO;2.
  • Eguiluz, L., Gil Ibarguchi, I., Ábalos, B., & Apraiz, A. (2000). Superposed Hercynian and Cadomian orogenic cycles in the Ossa Morena zone and related areas of the Iberian Massif. Geological Society of America Bulletin, 112(9), 1398–1413.
  • Fernández, C., Becchio, R., Castro, A., Viramonte, J. M., Moreno-Ventas, I., & Corretgé, L. G. (2008). Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: Implications for cold plumes and back-arc magma generation. Gondwana Research, 14, 451–473. https ://doi.org/10.1016/j.gr.2008.04.001.
  • Fernández-Suárez, J., Gutiérrez-Alonso, G., Jenner, G. A., & Tubrett, M. N. (2000). New ideas on the Proterozoic-Early Palaeozoic evolution of NW Iberia: insights from U–Pb detrital zircon ages. Precambrian Research, 102, 185–206. https ://doi.org/10.1016/ S0301 -9268(00)00065 -6.
  • Floor, P. (1966). Petrology of an aegirine-riebeckite gneiss-bearing part of the Hesperian Massif: the Galiñeiro and surrounding areas, Vigo, Spain. Leidse Geologische Mededelingen, 36, 1–204.
  • Frost, R. B., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42(11), 2033–2048. https ://doi. org/10.1093/petro logy/42.11.2033.
  • Fuenlabrada, J. M., Arenas, R., Díez Fernández, R., Sánchez Martínez, S., Abati, J., & López Carmona, A. (2012). Sm–Nd isotope geochemistry and tectonic setting of the metasedimentary rocks from the basal allochthonous units of NW Iberia (Variscan suture, Galicia). Lithos, 148(196–208), 2012. https ://doi.org/10.1016/j. litho s.2012.06.002.
  • García-Arias, M., Díez-Montes, A., Villaseca, C., & Blanco-Quintero, I. F. (2018). The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: a review. Earth- Science Reviews, 176, 345–372. https ://doi.org/10.1016/j.earsc irev.2017.11.004.
  • Gil Ibarguchi, J. I., & Ortega Gironés, E. (1985). Petrology, structure and geotectonic implications of glaucophane-bearing eclogites and related rocks from the Malpica-Tuy (MT) Unit, Galicia, Northwest Spain. Chemical Geology, 50, 145–162. https ://doi. org/10.1016/0009-2541(85)90117 -2.
  • Hernández-Bernal, M. D. S., Corona-Chávez, P., Solís-Pichardo, G., Schaaf, P., Solé- Viñas, J., & Molina, J. F. (2015). Miocene andesitic lavas of Sierra de Angangueo: a petrological, geochemical, and geochronological approach to arc magmatism in Central Mexico. International Geology Review. https ://doi. org/10.1080/00206 814.2015.11013 56.
  • Liégois, J.P.; & Black, R (1987). Alkaline magmatism subsequent to collision in the Pan-African belt of the Adrar des Iforase. In J.G. Fitton, & B.G.J. Upton (Eds.), Alkaline Igneous Rocks. Geological Society, vol. 30 (pp. 381–401) (Special Publication)
  • Llana-Fúnez, S., & Marcos, A. (2002). Structural record during exhumation and emplacement of high-pressure low- to intermediate- temperature rocks in the Malpica-Tui unit (Variscan Belt of Iberia). In: J.R. Martínez Catalán, R.D. Hatcher, R. Arenas, & F. Díaz García (Eds.), Variscan-Appalachian Dynamics: the Building of the Late Paleozoic Basement. Geological Society of America Special Paper (pp. 125–142). https ://doi. org/10.1130/0-8137-2364-7.125
  • López-Carmona, A., Pitra, P., & Abati, J. (2013). Blueschists facies pelites from the Malpica-Tui unit (NW Iberian Massif): phase equilibria modeling and H2O and Fe2O3 influence in highpressure assemblages. Journal of Metamorphic Geology, 31(3), 263–280. https ://doi.org/10.1111/jmg12 018.
  • López-Carmona, A., Abati, J., & Pitra, P. (2014). Retrogressed lawsonite blueschists from the NW Iberian Massif: P-T-t constraints from thermodynamic modelling and 40Ar/39Ar geochronology. Contributions to Mineralogy and Petrology, 167(987), 20. https ://doi.org/10.1007/s0041 0-014-0987-5.
  • Lugmair, G. W., Shimamura, T., Lewis, R. S., & Anders, E. (1983). Sm-146 in the early solar-system—evidence from neodymium in the Allende meteorite. Science, 222, 1015–1018. https ://doi. org/10.1126/scien ce222 .4627.1015.
  • Martínez Catalán, J. R., Arenas, R., Díaz García, F., & Abati, J. (1997). Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology, 25, 1103–1106. https ://doi.org/10.1130/091-7613(1997)025%3c110 3:VACON I%3e2.3.CO;2.
  • Martínez Catalán, J.R., Arenas, R., Díaz García, F., Gómez Barreiro, J., González Cuadra, P., Abati, J., Castiñeiras, P., Fernández-Suárez, J., Sánchez Martínez, S., Andonaegui, P., González Clavijo, E., Díez Montes, A., Rubio Pascual, F.J., & Valle Aguado, B., (2007). Space and time in the tectonic evolution of the northwestern Iberian Massif. Implications for the Variscan belt, In: R.D. Hatcher, M.P. Carlson, J.H. Mcbride, & J.R. Martínez Catalán (Eds.). 4-D Framework of Continental Crust, vol. 200 (pp. 403–423). Geological Society of America Memoir, Boulder, Colorado. https :// doi.org/10.1130/2007.1200(21)
  • Martínez Catalán, J.R., Gómez Barreiro, J., Dias da Silva, Í., Chichorro, M., López-Carmona, A., Castiñeiras, P., Abati, J., Andonaegui, P., Fernández Suárez, J., & González Cuadra, P. (2019). Variscan suture zone and suspect terranes in the NW Iberian Massif: Allochthonous Complexes of the Galicia-Trás os Montes Zone (NW Iberia). In C. Quesada, & J.T. Oliveira (Eds.), The Geology of Iberia: A geodynamic approach. Regional Geology Reviews (pp. 99–130). https ://doi.org/10.1007/978-3-030-10519 -8_4
  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.
  • Montero, P., Bea, F., Corretge, L. G., Floor, P., & Whitehouse, M. J. (2009). U-Pb ion microprobe dating and Sr and Nd isotope geology of the Galiñeiro Igneous Complex: a model for the peraluminous/ peralkaline duality of the Cambro-Ordovician magmatism of Iberia. Lithos, 107, 227–238. https ://doi.org/10.1016/j.litho s.2008.10.009.
  • Montero, P., Floor, P., & Corretge, L. G. (1998). The accumulation of rare-earth and high-field-strength elements in peralkaline granitic rocks: the Galineiro orthogneissic complex, northwestern Spain. Canadian Mineralogist, 36, 683–700.
  • Moreno, J. A., Molina, F. J., Montero, P., Abu Anbar, M., Scarrow, J. H., Cambeses, A., & Bea, F. (2014). Unraveling sources of A-type magmas in juvenile continental crust: Constraints from compositionally diverse Ediacaran post-collisional granitoids in the Katerina Ring Complex, southern Sinai, Egypt. Lithos, 192– 195, 56–85. https ://doi.org/10.1016/j.litho s.2014.01.010.
  • Nance, R.D., Murphy, J.B., Strachan, R.A., Keppie, J.D., Gutiérrez- Alonso, G., Fernández-Suárez, J., Quesada, C., Linnemann, U., D’lemos, R., & Pisarevsky, S.A. (2008). Neoproterozoic-early Paleozoic tectonostratigraphy and paleogeography of peri-Gondwanan terranes: Amazonian versus West African conections. In J.P. Ligèlois, & N. Enmih (Eds). The boundaries of the West African craton, vol. 297 (pp. 348–383). The Geological Society of London. https ://doi.org/10.1144/SP297 .17 (Special publication)
  • O’Nions, R. K., Carter, S. R., Evensen, N. M., & Hamilton, P. J. (1979). Geochemical and cosmochemical applications of Nd isotope analysis. Annual Reviews Earth Planetary Sciences, 7, 11–38. https :// doi.org/10.1146/annur ev.ea.07.05017 9.00030 3.
  • Pearce, J. A., Harris, N. B. W., & Tindle, A. G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25, 956–983. https ://doi.org/10.1093/ petro logy/25.4.956.
  • Quesada, C. (1990). Precambrian successions in SW Iberia: their relationship to ‘Cadomian’ orogenic events. In: R. D’lemos, R.A. Strachan, & Topley C.G. (Eds.), The Cadomian Orogeny (pp. 353–362). Geological Society, London. https ://doi.org/10.1144/ GSL.SP.1990.051.01.23 (Special Publication)
  • Ribeiro, A., Pereira, E., & Dias, R. (1990). Structure in the northwest of the Iberian Peninsula. In R. D. Dallmeyer & E. Martínez García (Eds.), Pre-Mesozoic Geology of Iberia (pp. 220–236). Berlin: Springer.
  • Robinson, F. A., Bonin, B., Pease, V., & Anderson, J. L. (2017). A discussion on the tectonic implications of Ediacaran late- to postorogenic A-type granite in the north eastern Arabian shield, Saudi Arabia. Tectonics, 36, 582–600. https ://doi.org/10.1002/2016T C0043 20.
  • Rodríguez Aller, J. (2005). Recristalización y deformación de litologías supracorticales sometidas a metamorfismo de alta presión (Complejo de Malica-Tuy, NO del Macizo Ibérico). Nova Terra: A Coruña, Laboratorio Xeolóxico de Laxe.
  • Rodríguez, J., Paquette, J.L., & Gil Ibarguchi, J.I. (2007). U-Pb dating of Lower Ordovician alkaline magmatism in the Gondwana margin (Malpica-Tui complex, Iberian Massif): latest continental events before oceanic spreading. In: R. Arenas, J.R. Martínez Catalán, J. Abati, & S. Sánchez Martínez (Eds.), IGCP 497—The Rheic Ocean: Its origin, evolution and correlatives . The rootless Variscan suture of NW Iberia (Galicia, Spain). Field guide and Conference abstracts (pp. 163–164). Instituto Geológico y Minero de España
  • Rubio-Ordóñez, A., Valverde Vaquero, P., Corretge, L. G., Cuesta- Fernández, A., Gallastegui, G., Fernández-González, M., & Gerdes, A. (2012). An Early Ordovician tonalitic–granodioritic belt along the Schistose-Greywacke Domain of the Central Iberian Zone (Iberian Massif, Variscan Belt). Geological Magazine, 149, 927–939. https ://doi.org/10.1017/S0016 75681 10011 29.
  • Sánchez-García, T., Pereira, M. F., Bellido, F., Chichorro, M., Silva, J. B., Valverde-Vaquero, P., et al. (2014). Early Cambrian granitoids of North Gondwana margin in the transition from a convergent setting to intra-continental rifting (Ossa-Morena Zone, SW Iberia). International Journal of Earth Sciences, 103, 1203–1218. https ://doi.org/10.1007/s0053 1-013-0939-8.
  • Sánchez Martínez, S., Arenas, R., Fernández Suárez, J., & Jeffries, T. E. (2009). From Rodinia to Pangea: ophiolites from NW Iberia as witness for a long-lived continental margin. Geological Society London, 327, 317–341. https ://doi.org/10.1144/SP327 .14.
  • Sengör, A. M. C., & Burke, K. (1978). Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophysical Research Letters, 5(6), 419–421. https ://doi.org/10.1029/GL005 i006p 00419 .
  • Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40(4), 3-1-3–38. https ://doi.org/10.1029/2001R G0001 08.
  • Villaseca, C., Merino, E., Oyarzun, R., Orejana, D., Pérez-Soba, C., & Chicharro, E. (2014). Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the Central Iberian Zone (Spain) of pre-Variscan Europe: Implications for terrane analysis and Early Ordovician magmatic belts. Precambrian Research, 245, 131–145. https ://doi.org/10.1016/j.preca mres.2014.02.006.