Early Ordovician magmatism in the Sierra de Ancaján, Sierras Pampeanas, Argentinaimplications for the early evolution of the proto‑Andean margin of Gondwana

  1. Priscila S. Zandomeni 1
  2. Sebastián O. Verdecchia 1
  3. Edgardo G. Baldo 1
  4. Carmen Galindo 2
  5. Juan A. Moreno 1
  6. Juan A. Dahlquist 1
  7. César Casquet 2
  8. Matías M. Morales Cámera 1
  9. Miguel A. S. Basei 3
  10. Carlos D. Ramacciotti 1
  1. 1 Universidad Nacional de Córdoba
    info

    Universidad Nacional de Córdoba

    Córdoba, Argentina

    ROR https://ror.org/056tb7j80

  2. 2 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  3. 3 Universidade de São Paulo
    info

    Universidade de São Paulo

    São Paulo, Brasil

    ROR https://ror.org/036rp1748

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2021

Título del ejemplar: New developments in Geochemistry. A tribute to Carmen Galindo

Volumen: 47

Número: 1-2

Páginas: 39-63

Tipo: Artículo

DOI: 10.1007/S41513-020-00141-0 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

El plutón Ancaján es un cuerpo ígneo elongado, de reducidas dimensiones (ca. 5.34 km2) y composición granodiorítica a monzogranítica que aflora en la Sierra de Ancaján (Sierras Pampeanas Orientales), intruyendo a mármoles y rocas metasedimentarias de la serie Ancaján de edad Ediacarense. Nuevas dataciones de U–Pb en circón realizadas en una muestra granodiorítica mediante SHRIMP y LA-MC-ICP-MS indican una probable edad de cristalización Ordovícica de unos 473 Ma. También se han registrado circones heredados de edades Cámbricas, Neoproterozoicas, Mesoproterozoicas y Paleoproterozoicas. Los granitoides de Ancaján son calcoalcalinos, magnesianos y ligeramente peraluminosos con contenidos medios a altos de K2O (2.44–3.74% en peso) y altos de Na2O (4.05–4.51% en peso). Estas características geoquímicas son comparables a las del magmatismo sódico de tipo TTG Ordovícico del Dominio de Antepaís Famatiniano (FFD) de las Sierras de Córdoba. En consecuencia, el pluton Ancaján podría representar el afloramiento más septentrional de dicho magmatismo. Los datos isotópicos (Sr/Sri = 0.7052–0.7055; εNdi = − 0.7 to − 0.4; TDM = 1.24–1.27 Ga) junto con la presencia de circones heredados, sugieren que el magma parental resultó de la fusión parcial de una fuente combinada, que estaría formada principalmente por un manto subcontinental más viejo con una composición que correspondería a una litosfera oceánica máfica-ultramáfica, junto con el reciclado/asimilación de corteza continental que involucraría granitoides Pampeanos y/o protolitos sedimentarios de edad Ediacarense a Cámbrica. Esta interpretación coincide con la postulada para los granitoides Ordovícicos ricos en Na de las Sierras de Córdoba. Las evidencias presentadas en este trabajo indican que las rocas metasedimentarias que afloran en la Sierra de Ancaján formaron parte de la placa continental superior durante la subducción Famatiniana, corroborando así, la imbricación previa de las series Ancaján y Puncoviscana durante la Orogenia Pampeana de edad Cámbrico temprano.

Información de financiación

Referencias bibliográficas

  • Abdel-Rahman, A. M. (1994). Nature of biotites from alkaline, calcalkaline and peraluminous magmas. Journal of Petrology, 35, 525–541.
  • Aceñolaza, F. G., & Toselli, A. J. (1976). Consideraciones estratigráficas y tectónicas sobre el Paleozoico inferior del Noroeste Argentino. II Congreso Latinoamericano de Geología, Actas 2: 755–764, Caracas.
  • Alasino, P. H., Casquet, C., Galindo, C., Pankhurst, R. J., Rapela, C. W., Dahlquist, J. A., et al. (2020). O-H-Sr-Nd isotope constraints on the origin of the Famatinian magmatic arc, NW Argentina. Geological Magazine. https ://doi.org/10.1017/S001675682 0000321
  • Alasino, P. H., Casquet, C., Larrovere, M. A., Pankhurst, R. J., Galindo, C., Dahlquist, J. A., et al. (2014). The evolution of a mid-crustal thermal aureole at Cerro Toro, Sierra de Famatina, NW Argentina. Lithos, 190–191, 154–172.
  • Alasino, P. H., Casquet, C., Pankhurst, R. J., Rapela, C. W., Dahlquist, J. A., Galindo, C., et al. (2016). Mafic rocks of the Ordovician Famatinian magmatic arc (NW Argentina): New insights into the mantle contribution. Geological Society of America Bulletin, 128, 1105–1120
  • Alasino, P. H., Dahlquist, J. A., Pankhurst, R. J., Galindo, C., Casquet, C., Rapela, C. W., et al. (2012). Early Carboniferous sub to mid-alkaline magmatism in the Eastern Sierras Pampeanas. NW Argentina: a record of crustal growth by the incorporation of mantle-derived material in an extensional setting. Gondwana Research, 22, 992–1008.
  • Alasino, P. H., Dahlquist, J. A., Rapela, C. W., Larrovere, M. A., Rocher, S., Morales Cámera, M. M., et al. (2017). Magmatismo Ordovícido en las Sierras Pampeanas de las provincias de La Rioja y Catmarca. Capítulo del Relatorio del XX Congreso Geológico Argentino. Año: 2017; pp. 366–399.
  • Andersen, T. (2002). Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192, 59–79.
  • Baker, F. (1979). Trondhjemite definition, environment and hypothesis or origin. In F. Baker (Ed.), Trondhjemites, dacites, and related rocks (pp. 1–12). New York: Elsevier.
  • Battaglia, A. (1982). Descripción geológica de las Hojas 13f, Río Hondo; 13g Santiago del Estero; 14g, El Alto; 14h, Villa San Martín; 15g, Frías (provincias de Santiago del Estero, Catamarca y Tucumán). Servicio Geológico Nacional, Boletín 186, 80 p.
  • Beder, R. (1928). La Sierra de Guasayán y sus alrededores. Dirección General de Minas, Geología e Hidrogeología, 39, 9–152.
  • Black, L. P., & Gulson, B. L. (1978). The age of the Mud Tank carbonatite, Strangways Range, Northern Territory. Journal of Australian Geology and Geophysics, 3, 227–232.
  • Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. A., Davis, D. W., Korsch, J. R., et al. (2003). TEMORA 1 a new zircon standard for Phanerozoic U-Pb geochronology. Chemical Geology, 200, 155–170.
  • Blasco, G., Caminos, R. L., Lapido, O., Lizuaín, A., Martinez, H., Nullo, F., et al. (1994). Hoja Geológica 2966-II, San Fernando del Valle de Catamarca, provincias de Catamarca, Santiago del Estero y Tucumán. Programa nacional de cartas geológicas de la República Argentina, 1:250.000, SEGEMAR. 50 p.
  • Casquet, C., Pankhurst, R. J., Rapela, C. W., Galindo, C., Fanning, C. M., Chiaradia, M., et al. (2008). The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa-Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research, 13, 163–175.
  • Casquet, C., Dahlquist, J. A., Verdecchia, S. O., Baldo, E. G., Galindo, C., Rapela, C. W., et al. (2018). Review of the Cambrian Pampean orogeny of Argentina; a displaced orogen formerly attached to the Saldania Belt of South Africa? Earth Sciences Reviews, 177, 209–225.
  • Catalano, L. R. (1964). Reconocimiento Geológico-Económico de la Sierra de Ancaján. Estudios de Geología y Minería Económica. Serie Argentina nro 1, 46 p. Buenos Aires, Ministerio de Economía de la Nación. Secretaría de Industria y Minería. Subsecretaría de Minería.
  • Cawood, P. A. (2005). Terra Australis Orogen: Rodinia breakup and development of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth-Science Reviews, 69, 249–279.
  • Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U-Pb dating of zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(Q05009), 1–14.
  • Chernicoff, C. J., Zappettini, E. O., Santos, J. O. S., Allchurch, S., & McNaughton, N. J. (2010). The southern segment of the Famatinian magmatic arc, La Pampa Province, Argentina. Gondwana Research, 17, 662–675.
  • Chew, D. M., Kirkland, C. L., Schalteger, U., & Goodhue, R. (2007). Neoproterozoic glaciation in the Proto-Andes: tectonic implications and global correlation. Geology, 35, 1095–1099.
  • Coira, B., Cisterna, C. E., Ulbrich, H. H., & Cordani, U. G. (2016). Extensional Carboniferous magmatism at the western margin of Gondwana: Las Lozas valley, Catamarca, Argentina. Andean Geology, 43, 105–126.
  • Cristofolini, E. A., Otamendi, J. E., Walker, B. A., Jr., Tibaldi, A. M., Armas, P., Bergantz, G. W., et al. (2014). A middle Paleozoic Shear Zone in the Sierra de Valle Fértil, Argentina: Records of a continent-Arc collision in the famatinian margin of Gondwana. Journal of South American Earth Sciences, 56, 170–185.
  • Cumming, G. L., & Richards, J. R. (1975). Ore lead isotope ratios in a continuously changing Earth. Earth and Planetary Science Letters, 28, 155–171.
  • Dahlquist, J. A., & Alasino, P. H. (2005). Hallazgo de granitoides fuertemente peraluminosos en la sierra de Famatina, orógeno Famatiniano. Revista de la Asociación Geológica Argentina, 60, 301–310.
  • Dahlquist, J. A., Alasino, P. H., Basei, M. A. S., Morales Cámera, M. M., Macchioli Grandre, M., & Campos Neto, M. C. (2018). Petrological, geochemical, isotopic, and geochronological constraints for the Late Devonian-Early Carboniferous magmatism in SW Gondwana (27–32°LS): an example of geodynamic switching. International Journal of Earth Sciences, 107, 2575–2603.
  • Dahlquist, J. A., Alasino, P. H., & Bello, C. (2014). Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineralogy and Petrology, 108, 391–417.
  • Dahlquist, J. A., Alasino, P. H., Eby, G. N., Galindo, C., & Casquet, C. (2010). Fault controlled Carboniferous A-type magmatism in the proto-Andean forelan (Sierras Pampeanas, Argentina): Geochemical constraints and petrogenesis. Lithos, 115, 65–81.
  • Dahlquist, J. A., Galindo, C., Pankhurst, R. J., Rapela, C. W., Alasino, P. H., Saavedra, J., et al. (2007). Magmatic evolution of the Peñón Rosado granite: petrogenesis of garnet-bearing granitoids. Lithos, 95, 177–207.
  • Dahlquist, J. A., Macchioli Grande, M., Alasino, P. H., Basei, M. A. S., Galindo, C., Moreno, J. A., et al. (2019). New geochronological and isotope data for the Las Chacras—Potrerillos and Renca batholiths: a contribution to the Middle-Upper Devonian magmatism in the pre-Andean foreland (Sierras Pampeanas, Argentina), SW Gondwana. Journal of South American Earth Sciences, 93, 348–363.
  • Dahlquist, J. A., Pankhurst, R. J., Gaschnig, R. M., Rapela, C. W., Casquet, C., Alasino, P. H., et al. (2013). Hf and Nd isotopes in Early Ordovician to Early Carboniferous granites as monitors of crustal growth in the Proto-Andean margin of Gondwana. Gondwana Research, 23, 1617–1630.
  • Dahlquist, J. A., Pankhurst, R. J., Rapela, C. W., Galindo, C., Alasino, P., Fanning, C. M., et al. (2008). New SHRIMP U-Pb data from the Famatina complex: constraining Early-Mid Ordovician Famatinian magmatism in the Sierras Pampeanas, Argentina. Geologica Acta, 6, 319–333.
  • Dahlquist, J. A., Rapela, C. W., Pankhurst, R. J., Fanning, C. M., Vervoort, J. D., Hart, G., et al. (2012). Age and magmatic evolution of the Famatinian granitic rocks of Sierra de Ancasti, Sierras Pampeanas, NW Argentina. Journal of South American Earth Sciences, 34, 10–25.
  • Demartis, M., Jung, S., Berndt, J., Aragón, E., Sato, A. M., Radice, S., et al. (2017). Famatinian inner arac: Petrographical observationsand geochronological constraints on pegmatites and leucogranites of the Comechingones pegmatitic field (Sierras de Córdoba, Argentina). Journal of South American Earth Sciences, 79, 239–253.
  • DePaolo, D. J., Linn, A. M., & Schubert, G. (1991). The continental crustal age distribution: Methods of determining mantle separation ages from Sm–Nd isotopic data and application to the Southwestern United States. Journal of Geophysical Research, 96, 2071–2088.
  • D’Eramo, F., Pinotti, L., Bonalumi, A., Sfragulla, J., Demartis, M., Coniglio, J., et al. (2014). El magmatismo Ordovícico en las Sierras Pampeanas de Córdoba. In: Martino, R. D., Guereschi, A. B. (Eds.), Geología y Recursos Naturales de la provincia de Córdoba. 19° Congreso Geológico Argentino, Relatorio, pp. 233–254.
  • Dickin, A. P. (2005). U-series dating. Radiogenic isotope geology (pp. 324–352). Cambridge: Cambridge University Press.
  • Ducea, M. N., Otamendi, J. E., Bergantz, G. W., Jianu, D., & Petrescu, L. (2015). The origin and petrologic evolution of the Ordovician Famatinian-Puna arc. In: DeCelles, P. G., Ducea, M. N., Carrapa, B. & Kapp, P. A. (Eds.) Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geological Society of America Memoir, 212, 125–138.
  • Ducea, M. N., Otamendi, J. E., Bergantz, G., Stair, K. M., Valencia, V. A., & Gehrels, G. E. (2010). Timing constraints on building an intermediate plutonic arc crustal section: U- Pb Zircon Geochronology of the Sierra Valle Fértil-la Huerta, Famatinian Arc. Tectonics, 29, 1–30.
  • Evans, B. W., & Vance, J. A. (1987). Epidote phenocrysts in dacitic dikes, Boulder County, Colorado. Contributions to Mineralogy and Petrology, 96, 178–185.
  • Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, S. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033–2048.
  • García-Ramírez, C. A., Rey-León, V., & Valencia, V. (2017). Ortoneises en la Franja Silos-Babega, Macizo de Santander, Colombia: evidencias de la orogenia famatiniana en los Andes del norte. Andean Geology, 44, 307–327.
  • Grosse, P., Bellos, L. I., de los Hoyos, C. R., Larrovere, M. A., Rossi, J. N., & Toselli, A. J. (2011). Across-arc variation of the Famatinian magmatic arc (NW Argentina) exemplified by I, S- and transitional I/S-type Early Ordovician granitoids of the Sierra de Velasco. Journal of South American Earth Sciences, 32, 110–126.
  • Hongn, F., Tubía, J. M., Esteban, J. J., Aranguren, A., Vegas, N., Sergeev, S., et al. (2014). The Sierra de Cachi (Salta, NW Argentina): Geological evidence about a Famatinian retro-arc at mid crustal levels. Journal of Iberian Geology, 40, 225–240.
  • Iannizzotto, N. F., Rapela, C. W., Baldo, E. G., Galindo, C., & Fanning, C. M. (2013). The Sierra Norte-Ambargasta Batholith: Cambrian magmatism formed in a transpressional belt along the western edge of the Río de la Plata Cratón. Journal of South American Earth Sciences, 42, 127–142.
  • Jackson, S. E., Pearson, N. J., Griffin, W. L., & Belousova, E. A. (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211, 47–69.
  • Jordan, T. E., & Allmendinger, R. W. (1986). The Sierras Pampeanas of Argentina: A modern analogue of Rocky mountain foreland deformation. American Journal of Sciece, 286, 737–764.
  • Kosler, J., & Sylvester, P. J. (2003). Present trends and the future of zircon in geochronology: laser ablation ICPMS. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon: Reviews in Mineralogy and Geochemistry, 53, 243–276.
  • Lagorio, S. L., Vizán, H., & Geuna, S. E. (2016). Early cretaceous volcanism in central and eastern Argentina during gondwana break-up (p. 141). Berlin: Springer.
  • Lucassen, F., & Franz, G. (2005). The early paleozoic orogen in the central Andes: a non- collisional orogen comparable to the cenozoic high plateau? In: Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J. (Eds.) Terrane Processes at the Margins of Gondwana. Geological Society of London, Special Publications, 246, 257–373.
  • Ludwig, K.R. (2008). Isoplot/EX 4.15: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 4, 2455 Ridge Road, Berkeley CA 94709, USA.
  • Marques, L. S., Dupre, B., & Piccirillo, E. M. (1999). Mantle source compositions of the parana Magmatic Province (southern Brazil): evidence from trace element and Sr-Nd-Pb isotope geochemistry. Journal of Geodynamics, 28, 439–458.
  • McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.
  • Morales Cámera, M. M., Dahlquist, J. A., Basei, M. A. S., Galindo, C., da Costa Campos Neto, M., & Facetti, N. (2017). F-rich strongly peraluminous A-type magmatism in the pre-Andean Foreland Sierras Pampeanas, Argentina: geochemical, geochronological, isotopic constraints and petrogenesis. Lithos, 277, 210–227.
  • Mulcahy, S. R., Roeske, S. M., McClelland, W. C., Jourdan, F., Iriondo, A., Renne, P. R., et al. (2011). Structural evolution of a composite middle to lower crustal section: The Sierra de Pie de Palo, Northwest Argentina. Tectonics, 30, 1–24.
  • Murra, J. A., Baldo, E. G., Galindo, C., Casquet, C., Pankhurst, R. J., Rapela, C. W., et al. (2011). Sr, C and O isotope composition of marbles from the Sierra de Ancasti, Eastern Sierras Pampeanas, Argentina: age and constraints for the Neoproterozoic-Lower Paleozoic evolution of the proto-Gondwana margin. Geologica Acta, 9, 79–92.
  • Murra, J. A., Casquet, C., Locati, F., Galindo, C., Baldo, E. G., Pankhurst, R. J., et al. (2016). Isotope (Sr, C) and U-Pb SHRIMP zircon geochronology of marble-bearing sedimentary series in the Eastern Sierras Pampeanas, Argentina. Constraining the SW Gondwana margin in Ediacaran to early Cambrian times. Precambrian Research, 281, 602–617.
  • Otamendi, J. E., Cristofolini, E. A., Morosini, A., Armas, P., Tibaldi, A. M., & Camilletti, G. C. (2020). The geodynamic history of the Famatinian arc, Argentina: A record of exposed geology over the type section (latitudes 27°–33° south). Journal of South American Earth Sciences, 100, 102558.
  • Otamendi, J. E., Ducea, M. N., & Bergantz, G. W. (2012). Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fertil, Famatinian Arc, Argentina. Journal of Petrology, 53, 761–800.
  • Otamendi, J. E., Ducea, M. N., Cristofolini, E. A., Tibaldi, A. M., Camilletti, G. C., & Bergantz, G. W. (2017). U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina. Journal of South American Earth Sciences, 76, 412–426.
  • Pankhurst, R. J., & Rapela, C. W. (1998). The proto-Andean margin of Gondwana: an introduction. In: Pankhurst, R. J. & Rapela, C. W. (eds) The Proto-Andean Margin of Gondwana. Geological Society, London, Special Publications, 142, 1–9.
  • Pankhurst, R. J., Rapela, C. W., & Fanning, C. M. (2000). Age and origin of coeval TTG, I- and S-type granites in the Famatinian belt of NW Argentina. Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 91, 151–168.
  • Pankhurst, R. J., Rapela, C. W., Fanning, C. M., & Márquez, M. (2006). Gondwanide continental collision and the origin of Patagonia. Earth-Science Reviews, 76, 235–257.
  • Pankhurst, R. J., Rapela, C. W., Lopez De Luchi, M. G., Rapalini, A. E., Fanning, C. M., & Galindo, C. (2014). The Gondwana connections of northern Patagonia. Journal of the Geological Society, 171, 313–328.
  • Pankhurst, R. J., Rapela, C. W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I., et al. (1998). The famatinian magmatic arc in the central sierras pampeanas: an early to mid-ordovician continental arc on the gondwana margin. In R. J. Pankhurst & C. W. Rapela (Eds.), The proto-andean margin of gondwana (Vol. 142, pp. 343–367). London Special Publications: Geological Society.
  • Piccirillo, E. M., & Melfi, A. J. (1988). The Mesozoic Flood Volcanism from the Paraná Basin (Brazil): petrogenetic and geophysical aspects (p. 600). San Pablo: Universidad de São Paulo.
  • Ramacciotti, C. D., Baldo, E. G., & Casquet, C. (2015). U-Pb SHRIMP detrital zircon ages from the Neoproterozoic Difunta Correa Metasedimentary Sequence (Western Sierras Pampeanas, Argentina): Provenance and paleogeographic implications. Precambrian Research, 270, 39–49.
  • Ramos, V. A., et al. (2018). The famatinian orogen along the protomargin of western Gondwana: Evidence for a nearly continuous ordovician magmatic arc between Venezuela and Argentina. In A. Folguera (Ed.), The evolution of the chilean-Argentinean andes (pp. 133–161). Berlin: Springer Earth System Sciences.
  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Galindo, C., Fanning, C. M., et al. (2010). The Western Sierras Pampeanas: protracted Grenville-age history (1330–1030 Ma) of intra-oceanic arcs, subduction–accretion at continental-edge and AMCG intraplate magmatism. Journal of South American Earth Sciences, 29, 105–127.
  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., et al. (1998). The Pampean orogeny of the south proto-Andes: evidence for Cambrian continental collision in the Sierras de Cordoba. In R. J. Pankhurst & C. W. Rapela (Eds.), The Proto-andean margin of Gondwana (Vol. 142, pp. 181–217). London, Special Publications: Geological Society.
  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Dahlquist, J. A., Fanning, C. M., Baldo, E. G., et al. (2018). A review of the Famatinian Ordovician magmatism in southern South America: evidence of lithosphere reworking and continental subduction in the early proto-Andean margin of Gondwana. Earth Science Reviews, 187, 259–285.
  • Rapela, C. W., Pankhurst, R. J., Casquet, C., Fanning, C. M., Baldo, E., González-Casado, J., et al. (2007). The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews, 83, 49–82.
  • Rapela, C. W., Verdecchia, S. O., Casquet, C., Pankhurst, R. J., Baldo, E. G., Galindo, C., et al. (2016). Identifying Laurentian and SW Gondwana sources in the Neoproterozoic to Early Paleozoic metasedimentary rocks of the Sierras Pampeanas: Paleogeographic and tectonic implications. Gondwana Research, 32, 193–212.
  • Sato, K., Basei, M. A. S., Sproesser, W. M., & Siga Jr, O. (2012). The application of U–Pb geochronology to zircon and titanite by laser ablation—ICP–MS. In The 8th International Conference on the Analysis of Geological and Environmental Materials, Annals, Búzios.
  • Sato, K., Santosh, M., Tsunogae, T., Chetty, T. R. K., & Hirata, T. (2011). Subduction accretion-collision history along the Gondwana suture in southern India: A laser ablation ICP-MS study of zircon chronology. Journal of Asian Earth Sciences, 40, 162–171.
  • Semenov, I., & Weimberg, R. F. (2017). A major mid-crustal decollement of the Paleozoic convergent margin of western Gondwana: The Guacha Corral shear zone, Argentina. Journal of Structural Geology, 103, 75–99.
  • Siegesmund, S., Steenken, A., López de Luchi, M. G., Wemmer, K., Hoffmann, A., & Mosch, S. (2004). The Las Chacras-Potrerillos batholith (Pampean Ranges, Argentina): Structural evidence, emplacement and timing of the intrusion. International Journal of Earth Sciences, 93, 23–43.
  • Sola, A. M., Becchio, R. A., & Pimentel, M. M. (2013). Petrogenesis of migmatites and leucogranites from Sierra de Molinos, Salta, Northwest Argentina: A petrologic and geochemical study. Lithos, 177, 470–491.
  • Suzaño, N. O., Sola, A. M., Elortegui Palacios, J., Becchio, R. A., Ortiz, A., Nieves, A. A., et al. (2017). Magmatismo plutónico del Paleozoico inferior de Salta y Jujuy. In: Muruaga, C.M., Grosse, P. (Eds.), Ciencias de la Tierra y Recursos Naturales del NOA. Relatorio del XX Congreso Geológico Argentino, San Miguel de Tucumán, pp. 323–351.
  • Tischendorf, G., Förster, H.-J., Gottesmann, B., & Rieder, M. (2007). True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71, 285–320.
  • Tischendorf, G., Rieder, M., Förster, H.-J., Gottesmann, B., & Guidotti, C. V. (2004). A new graphical presentation and subdivision of potassium micas. Mineralogical Magazine, 68, 649–667.
  • Van der Lelij, R., Spikins, R., Ulianov, A., Chiaradia, M., & Mora, A. (2016). Palaeozoic to Early Jurassic history of the northwestern corner of Gondwana, and implications for the evolution of the Iapetus, Rheic and Pacific Oceans. Gondwana Research, 31, 271–294.
  • von Gosen, W., McClelland, W. C., Loske, W., Martínez, J. C., & Prozzi, C. (2014). Geochronology of igneous rocks in the Sierra Norte de Córdoba (Argentina): Implications for the Pampean evolution at the western Gondwana margin. Lithosphere, 6, 277–300.
  • Vyhnal, C. R., McSween, H. Y., & Speer, J. A. (1991). Hornblende chemistry in southern Appalachian granitoids: Implications for aluminium hornblende thermobarometry and magmatic epidote stability. American Mineralogist, 76, 176–188.
  • Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185–187.
  • Williams, I. S., & Claesson, S. (1987). Isotopic evidence for the Precambrian prove-nance and Caledonian metamorphism of high grade paragneisses from the SeveNappes Scandinavian Caledonides. II: Ion microprobe zircon U–Th–Pb. Contributions to Mineralogy and Petrology, 97, 205–217.
  • Willner, A. P., Lottner, U. S., & Miller, H. (1987). Early Paleozoic development in the NW Argentine basement of the Andes and its implication for geodynamic reconstruction. American Geophysical Union, Actas (Vol. 40, pp. 8–9). Washington: Estados Unidos.