Evaluating the post-fire natural regeneration of Mediterranean-type scrublands in Central Spain

  1. Rosina Magaña Ugarte 1
  2. María Manuela Redondo García 2
  3. Daniel Sánchez-Mata 1
  1. 1 Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University.
  2. 2 Department of Geography, Faculty of Geography and History, Complutense University.
Revista:
Mediterranean Botany

ISSN: 2603-9109

Año de publicación: 2021

Volumen: 42

Tipo: Artículo

DOI: 10.5209/MBOT.67331 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Mediterranean Botany

Resumen

We performed a five-year assessment of the natural vegetation restoration capacity following the 2012 fires in Valdemaqueda (Madrid, Spain) via the characterization of the post-fire and residual vegetation and the analysis of soil physico-chemical characteristics. Six pilot-plots were established in the affected site. Forest species, representative of the potential natural vegetation of the area (Juniperus oxycedrus subsp. lagunae and Quercus rotundifolia woodlands) and broom shrubs (Cytisus scoparius, Retama sphaerocarpa) were planted to assess the relationship among the stages of ecological succession, competition, and soil restoration processes following devastating fire events. The fire-driven alteration of the soil’s physico-chemical properties was evident, given the increased pH and reduced C/N ratio in the first years of the study. However, we observed an increased soil enrichment in the last years of study, accompanied by the propagation of herbaceous species, supporting our seed bank findings, showing a clear difference in the sprouting rate between burnt and control plots (80% vs. 20%, respectively). The establishment of robust, pyrophyte shrub species (Cistus ladanifer, C. laurifolius, Rosmarinus officinalis) rather than natural succession evidenced the clear conversion of the vegetation in burnt areas. These findings in the pilot-plots allowed evidencing the high vulnerability of the natural vegetation to the settling of pyrophytes, given their low survival rate under the strong competitive pressure of these pyrophytic species. The proliferation of these pyrophytes could translate into changes in soil macro- and microbiota, nutrient dynamics, species diversity, and interaction, added to the alteration of fire regimes in the area. Overall, these results highlight the risk for soil impoverishment and possible erosion of the fire-affected sites. Moreover, they underline the importance of the establishment and regeneration of Genisteae species to outcompete pioneer pyrophytic species, favoring the restoration of the area’s potential natural vegetation.

Información de financiación

This project was funded by the Subdirección General de Conservación del Medio Natural, Dirección General de Medio Ambiente and the REMEDINAL network (S2018/EMT-4338), both belonging to the Consejería de Medio Ambiente of the Madrid Autonomous Community Government

Financiadores

    • S2018/EMT-4338

Referencias bibliográficas

  • Adams, M. & Attiwill, P. 1984. Role of Acacia spp. in nutrient balance and cycling in regenerating Eucalyptus regains F. Muell. Forests. I. Temporal changes in biomass and nutrient content. Aus. J. Bot. 32: 205−215. doi: 10.1071/BT9840205
  • Amatulli, G., Camia, A. & San Miguel-Ayanz, J. 2013. Estimating future burned areas under changing climate in the EU-Mediterranean countries. Sci. Total Environ. 450−451: 209-222. doi:10.1016/j.scitotenv.2013.02.014
  • Alcañiz, M. Outeiro, L., Francos, M. & Úbeda, X. 2018. Effects of prescribed fires on soil properties: a review. Sci. Tot. Env. 613: 944−957. doi:10.1016/j.scitotenv.2017.09.144
  • Anonymous. 2006. Standard practice for classification of soils for engineering purposes. Unified Soil Classification System). D2487. ASTM. West Conshohocken.
  • Burt, R. 2004. Soil Survey Laboratory Methods Manual. USDA, NCRS, Lincoln.
  • Certini, G. 2005. Effects of fire on properties of forest soils: a review. Oecologia 143(1): 1−10. doi: 10.1007/s00442-004-1788-8
  • DeBano, L. Dunn, P. & Conrad, C. 1977. Fire’s effect on physical and chemical properties of chaparral soils. I. Soil Nitrogen. Soil Sci. Soc. Am. J. 43: 504−509.
  • Dickens, S. & Allen, E. 2014. Exotic plant invasion alters chaparral ecosystem resistance and resilience pre-and post-wildfire. Biological Invasions. 16: 1119−1130. doi: 10.1007/s10530-013-0566-0
  • Diffenbaugh, N. Pal, J. Giorgi, F. & Gao, X. 2007. Heat stress intensification in the Mediterranean climate change hotspot. Geophys. Res. Lett. 34. doi: 10.1029/2007GL030000
  • Fornara, D.A. & Tilman, D. 2009. Ecological mechanisms associated with the positive diversity-productivity relationship in an N-limited grassland. Ecology 90 (2): 408−418. doi: 10.1890/08-0325.1
  • Giorgi, F. & Lionello, P. 2008. Climate change projections for the Mediterranean region. Glob. Planet. Change. 63: 90−104. doi: 10.1016/j.gloplacha.2007.09.005
  • Graber, R. & Thompson, D. 1978. Seeds in the organic layers and soil of four beech-birch-maple stands. United States Dept. Agric. For. Serv.
  • Hartman, H. & Kester, D. 1991. Propagación de plantas: Principios y prácticas. CECSA, Mexico D.F.
  • Hinojosa, M. Parra, A. Laudicina, V. & Moreno, J. 2016. Post-fire soil functionality and microbial community structure in a Mediterranean scrubland subjected to experimental drought. Sci. Total Environ. 573: 1178−1189. doi: 10.1016/j.scitotenv.2016.03.117
  • Jacobsen, A. & Pratt, B. 2018. Extensive drought-associated plant mortality as an agent of type-conversion in chaparral scrublands. New Phytol. 219: 498−504. doi: 10.1111/nph.15186
  • James, J. Kern, C. & Miesel, J. 2018. Legacy effects of prescribed fire season and frequency on soil properties in a Pinus resinosa forest in northern Minnesota. For. Ecol. Manage. 415−416: 47−57. doi: 10.1016/j.foreco.2018.01.021
  • Johnson, D. & Curtis, P. 2001. Effects of forest management on soil C and N storage: a meta-analysis. For. Ecol. Manag. 140: 227−238. doi:10.1016/S0378-1127(00)00282-6
  • Keeley, J. 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire. 18: 116−126. doi:10.1071/WF07049
  • Kraaij, T. Baard, J. Arndt, J. Vhengani, L., & van Wilgen, B. 2018. An assessment of climate, weather and fuel factors influencing a large, destructive wildfire in the Knysna region, South Africa. Fire Ecology. 14(4). doi: 10.1186/s42408-018-0001-0
  • Moreira, F. Ascoli, D. Safford, H. Adams, M. Moreno, J.M. Pereira, J.M.C., Catry, F.X., Armesto, J. Bond, W. González, M.E. Curt, T. Koutsias, N. McCaw, L., Price, O. Pausas, J.G. Rigolot, E. Stephens, S. Tavsanoglu, C. Vallejo, V.R., van Wilgen, B.W. Xanthopoulos, G. & Fernandes, P.M. 2020. Wildfire management in Mediterranean-type regions: paradigm change needed. Environ. Res. Lett. 15. doi: 10.1088/1748-9326/ab541e
  • Mucina, L., Bültmann, H., Dierßen, K. Theurillat, J.P. Raus, T. Carni, A. Sumberová, K. Willner, W., Dengler, J. Gavilán, R.G. Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D. Pallas, J. Daniëls, F.J.A. Bergmeier, E. Santos Guerra, A. Ermakov, N.Valachovic, M., Schaminée, J.H.J. Lysenko, T. Didukh, Y.P., Pignatti, S. Rodwell, J.S., Capelo, J. Weber, .E. Solomeshch, A. Dimopoulos, P. Aguiar, C. Hennekens, S.M. & Tychy, L. 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen and algal communities. Appl. Veg. Sci. 19: 3−264. doi: 10.1111/avsc.12257
  • Mucina, L. & van der Maarel, E. 1989. Twenty years of numerical syntaxonomy. Vegetation. 81: 1-15. doi: 10.1007/BF00045509
  • Neary, D. Ryan, K. & DeBano, L. (Eds.). 2005 (revised 2008). Wildland fire in ecosystems: effects of fire on soils and water. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Utah.
  • Pellegrini, A.F. Ahlström, A. Hobbie, S.E. Reich P.B. Nieradzik, L.P. Staver, A.C. Scharenbroch, B.C. Jumpponen, A., Anderegg, W.R. Randerson, J.T. Jackson, R.B. 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 533: 194. doi: 10.1038/nature24668
  • Pérez-Fernández, M. Calvo-Magro, E. & Valentine, A. 2016. Benefits of the symbiotic association of shrubby legumes for the rehabilitation of degraded soils under Mediterranean climatic conditions. Land Degrad. Dev. 27: 395−405. doi: 10.1002/ldr.2457
  • Rivas-Martínez, S. Díaz, T. Fernández-González, F. Izco, J. Loidi, J. Lousa, M. & Penas, A. 2002. Vascular plant communities of Spain and Portugal. Addenda to the Syntaxonomical Checklist of 2001. Itinera Geobot. 15(2): 433−922.
  • Rivas-Martínez, S. Rivas-Sáenz, S. & Penas, A. 2011. Worldwide Bioclimatic Classification System. Global Geobotany. 1: 1−634.
  • Salvati, L. Zitti, M. & Perini, L. 2013. Fifty years on: long-term patterns of land sensitivity to desertification in Italy. Land Degrad. Dev. 22: 537−550. doi: 10.1002/ldr.2226
  • San Miguel-Ayanz, J. Moreno, J. & Camia, A. 2013. Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. Ecol. Manag. 294: 11−22. doi: 10.1016/j.foreco.2012.10.050
  • Santín, C. Otero, X.L. Doerr, S.H., Chafer, C.J. 2018. Impact of a moderate/high-severity prescribed eucalypt forest fire on soil phosphorous stocks and partitioning. Sci. Tot. Environ. 621: 1103−1114. doi: 10.1016/j.scitotenv.2017.10.116
  • Simard, D.G. Fyles, J.W. Paré, D. Nguyen, T. 2001. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Can. J. Soil Sci. 8: 229−237. doi: 10.4141/S00-028
  • Schoennagel, T. Veblen, T. & Romme, W. 2004. The interaction of fire, fuels and climate across Rocky Mountain forests. Bioscience 54: 661−676. doi: 10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2
  • Spehn, E.M. Scherer-Lorenzen, M. Schmid, B. Hector, A. Caldeira, M.C. Dimitrakopoulos, P.G. Finn, J.A. Jumpponen, A. O ́Donnovan, G. Pereira, J.S. Schulze, E.D. Troumbis, A.Y. & Körner, C. 2002. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos 98: 205−218. doi: 10.1034/j.1600-0706.2002.980203.x
  • Temperton, V.M. Mwangi, P.N. Scherer-Lorenzen, M. Schmid, B. Buchmann, N. 2007. Positive interactions between nitrogen-fixing legumes and four different neighboring species in a biodiversity experiment. Oecologia 151: 190−205. doi: 10.1007/s00442-006-0576-z
  • Thompson, K. Bakker, J. & Bekker, R. 1997. The soil seed banks of Northwest Europe, Methodology, Density and Longevity. Cambridge University Press, Cambridge.
  • Tomkins, I.B. Kellas, J.D. Tolhurst, K.G. Oswin, D.A. 1991. Effects of fire intensity on soil chemistry in a eucalypt forest. Soil Res. 29: 25-47. doi: 10.1071/SR9910025
  • Vallejo, R. Smanis, A. Chirino, E., Fuentes, D. Valdecantos, A. & Vilagrosa, A. 2012. Perspectives in dryland restoration: approaches for climate change adaptation. New Forests 43: 561−579. doi: 10.1007/s11056-012-9325-9
  • Van Wilgen, B. & Scott, D. 2001. Managing fires on the Cape Peninsula of South Africa: dealing with the inevitable. J. Mediterr. Ecol. 2: 197−208. doi: 10.17159/sajs.2015/a0090
  • Van Reeuwijk, L.P. 2002. Procedures for Soil Analysis. International Soil Reference and Information Centre. https://www.isric.org/sites/default/files/ISRIC_TechPap09.pdf
  • Vilà, M., & Gimeno, I. 2007. Does invasion by alien species affect the soil seed bank? J. Veg. Sci., 18: 423−430. doi: 10.1111/j.1654-1103.2007.tb02554.x
  • Weston, C., & Atwill, P. 1996. Clearfelling and burning effects on nitrogen mineralization and leaching in soils of old-age Eucalyptus regains forests. For. Ecol. Manage. 89: 13−24. doi: 1016/S0378-1127(96)03871-6
  • Euro+Med PlantBase. 2006. Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. Retrieved from http://ww2.bgbm.org/EuroPlusMed/
  • Soil Survey Staff. 1999. Soil Taxonomy: A basic system of soil classification for marking and interpreting soil surveys. In US Department of Agriculture, Handbook 436. 2nd edition. Washington, DC, Natural Resources Conservation Service... https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/taxonomy/