Participación ciudadana en TwitterPolémicas anti-vacunas en tiempos de COVID-19

  1. Rafael Carrasco Polaino 1
  2. Miguel Ángel Martín Cárdaba 2
  3. Ernesto Villar Cirujano 2
  1. 1 Universidad Complutense de Madrid
    info

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Universidad Villanueva
    info

    Universidad Villanueva

    Madrid, España

Revista:
Comunicar: Revista Científica de Comunicación y Educación

ISSN: 1134-3478

Año de publicación: 2021

Título del ejemplar: Participación ciudadana en la esfera digital

Número: 69

Páginas: 21-31

Tipo: Artículo

DOI: 10.3916/C69-2021-02 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Comunicar: Revista Científica de Comunicación y Educación

Objetivos de desarrollo sostenible

Resumen

Twitter se ha transformado en una de las principales plataformas de participación ciudadana hoy en día. Sin embargo, aun cuando estudios similares previos se han centrado en la opinión sobre las vacunas en general o sobre otras vacunas específicas, hasta la fecha no se han investigado las opiniones hacia las vacunas contra la COVID-19 en Twitter. El objetivo de esta investigación es, mediante el uso de herramientas de análisis de redes sociales y de herramientas de procesamiento del lenguaje, examinar el grado en el que las opiniones e interacciones presentes en Twitter son favorables o no hacia las principales vacunas de la COVID-19. Además, se estudia la relevancia de cada una de las principales vacunas, así como su nivel de controversia (polemicidad). Igualmente, el presente estudio investiga por primera vez la conversación no solo desde el punto de vista del contenido, sino también de los participantes que la integran, analizando en detalle las cuentas verificadas y empleando herramientas para la detección de bots. En términos globales, los resultados muestran una moderada favorabilidad hacia las vacunas de la COVID-19, siendo las más aceptadas las de Oxford-AstraZeneca, Pfizer y Moderna, y la de Sputnik V en el caso concreto de las cuentas verificadas. Por otro lado, la vacuna que más atención acapara es la rusa Sputnik V, que es además la más polémica por detrás de las de origen chino. Por último, los usuarios verificados se muestran como agentes relevantes de la conversación por su mayor capacidad de difusión y alcance, mientras que la presencia de bots es prácticamente inexistente.

Información de financiación

Los resultados de esta investigación forman parte del proyecto de investigación con nombre «Sentimiento y popularidad de los mensajes pro y anti-vacunas en redes: análisis de respuestas explicitas e implícitas mediante EGG, GSR, reconocimiento facial y eyetracking» y referencia RTI2018-097670-B-I00 perteneciente a la CONVOCATORIA 2018 DE PROYECTOS I+D+I «RETOS INVESTIGACIÓN» DEL PROGRAMA ESTATAL DE I+D+I ORIENTADA A LOS RETOS DE LA SOCIEDAD, financiado por el Ministerio de Ciencia, Innovación y Universidades

Financiadores

Referencias bibliográficas

  • Hansen, D, Shneiderman, B & Smith, M A . 2010. Analyzing social media networks with NodeXL: Insights from a connected world. Graduate Journal of Social Science .
  • A.L., Schmidt,, Zollo, Fabiana, Scala, Antonio, Betsch, Cornelia & Quattrociocchi, Walter . 2018. Polarization of the vaccination debate on Facebook. Vaccine 36:3606–3612.
  • C.M., López-Rico,, J.L., González-Esteban, & A., Hernández-Martínez, . 2020. Consumo de información en redes sociales durante la crisis de la COVID-19 en España. Revista de Comunicación y Salud 10(2):461–481.
  • A.A., Dror,, Eisenbach, Netanel, Taiber, Shahar, Morozov, Nicole G., Mizrachi, Matti, Zigron, Asaf, Srouji, Samer & Sela, Eyal . 2020. Vaccine hesitancy: The next challenge in the fight against COVID-19. European Journal of Epidemiology 35(8):775–779.
  • Xiong, Ying, Cho, Moonhee & Boatwright, Brandon . 2019. Hashtag activism and message frames among social movement organizations: Semantic network analysis and thematic analysis of Twitter during the #MeToo movement. Public Relations Review 45:10–23.
  • Bertin, Paul, Nera, Kenzo & Delouvée, Sylvain . 2020. Conspiracy beliefs, rejection of vaccination, and support for hydroxychloroquine: A conceptual replication-extension in the COVID-19 pandemic context. Frontiers in Psychology 11:1–9.
  • World Economic Forum (Ed.) 2021. More people now plan to get a COVID-19 vaccine than in December.
  • Loria, S . 2020. TextBlob: Simplified text processing (0.16.0).
  • Yang, S, Quan-Haase, A & Rannenberg, K . 1983. The changing public sphere on Twitter: Network structure, elites and topics of the #righttobeforgotten. New Media & Society 19(12):1983–2002.
  • Mcknight, P E & Najab, J . 2010. Mann-Whitney U Test. In: Weiner, I.B. & Craighead, W.E. , eds. The Corsini Encyclopedia of Psychology. John Wiley & Sons https://doi.org/10.1002/9780470479216.corpsy0524
  • Centro de Investigaciones Sociológicas (CIS) 2021. Barómetro de febrero 2021.
  • T.S., Tomeny,, Vargo, Christopher J. & El-Toukhy, Sherine . 2017. Geographic and demographic correlates of autism-related anti-vaccine beliefs on Twitter, 2009-15. Social Science & Medicine 191:168–175.
  • Yelin, Dana, Wirtheim, Eytan, Vetter, Pauline, Kalil, Andre C, Bruchfeld, Judith, Runold, Michael, Guaraldi, Giovanni, Mussini, Cristina, Gudiol, Carlota, Pujol, Miquel, Bandera, Alessandra, Scudeller, Luigia, Paul, Mical, Kaiser, Laurent & Leibovici, Leonard . 2020. Long-term consequences of COVID-19: Research needs. The Lancet Infectious Diseases 20:1115–1117.
  • The American Journal of Managed Care (AJMC) (Ed.) 2020. A Timeline of COVID-19 Developments in 2020.
  • Dubé, Eve, Vivion, Maryline & MacDonald, Noni E . 2015. Vaccine hesitancy, vaccine refusal and the anti-vaccine movement: Influence, impact and implications. Expert Review of Vaccines 14(1):99–117.
  • Puente, S N, Maceiras, S D & Romero, D F . 2021. Twitter activism and ethical witnessing: Possibilities and challenges of feminist politics against gender-based violence. Social Science Computer Review 39(2):295–311.
  • Manfredi-Sánchez, Juan-Luis, Amado-Suárez, Adriana & Waisbord, Silvio . 2021. Presidential Twitter in the face of COVID-19: Between populism and pop politics. [Twitter presidencial ante la COVID-19: Entre el populismo y la política pop] Comunicar 29(66):83–94.
  • G.A., Auger, . 2013. Fostering democracy through social media: Evaluating diametrically opposed nonprofit advocacy organizations’ use of Facebook, Twitter, and YouTube. Public Relations Review 39(4):369–376.
  • Organización de Naciones Unidas (Ed.) 2020a. Cronología de la respuesta de la OMS a la COVID-19.
  • Gintova, Maria . 2019. Understanding government social media users: An analysis of interactions on immigration, refugees and citizenship Canada Twitter and Facebook. Government Information Quarterly 36(4):101388.
  • Botometer (Ed.) 2020. Botometer® by OSoMe. FAQ
  • H.T., Vu,, H.V., Do,, Seo, Hyunjin & Liu, Yuchen . 2020. Who leads the conversation on climate change? A study of a global network of NGOS on Twitter. Environmental Communication 14(4):450–464.
  • Denia, Elena . 2020. The impact of science communication on Twitter: The case of Neil deGrasse Tyson. [El impacto del discurso científico en Twitter: El caso de Neil deGrasse Tyson] Comunicar 28(65):21–30.
  • G.E., Sued-Palmeiro, & M., Cebral-Loureda, . 2020. Voces autorizadas en Twitter durante la pandemia de COVID-19: Actores, léxico y sentimientos como marco interpretativo para usuarios ordinarios. Revista de Comunicación y Salud 10(2):549–568.
  • Serrano-Contreras, Ignacio-Jesús, García-Marín, Javier & O.G., Luengo, . 2020. Measuring online political dialogue: Does polarization trigger more deliberation? Media and Communication 8:63–72.
  • Zimmer, C, Corum, J & Wee, S L . 2021. Coronavirus vaccine tracker. The New York Times
  • Milani, Elena, Weitkamp, Emma & Webb, Peter . 2020. The visual vaccine debate on Twitter: A social network analysis. Media and Communication 8:364–375.
  • Organización de Naciones Unidas (Ed.) 2020. Covid-19. Impact of the Pandemic on Trade and Development.
  • Twitter (Ed.) 2021. Acerca de las cuentas verificadas de Twitter.
  • A., Fauziyyah, . 2020. Analisis sentiment pandemi Covid19 pada streaming Twitter dengan text mining Python. Jurnal Ilmiah SINUS 18(2):31.
  • Bosch, T . 2017. Twitter activism and youth in South Africa: The case of #RhodesMustFall. Information, Communication & Society 20(2):221–232.
  • S.B., Meyer,, Violette, Richard, Aggarwal, Reenika, Simeoni, Michelle, MacDougall, Heather & Waite, Nancy . 2019. Vaccine hesitancy and Web 2.0: Exploring how attitudes and beliefs about influenza vaccination are exchanged in online threaded user comments. Vaccine 37(13):1769–1774.
  • Friedrich, M J . 2019. WHO’s Top Health Threats for 2019. JAMA (11) 321.
  • Puri, Neha, Coomes, Eric A., Haghbayan, Hourmazd & Gunaratne, Keith . 2020. Social media and vaccine hesitancy: New updates for the era of COVID-19 and globalized infectious diseases. Human Vaccines & Immunotherapeutics 16(11):2586–2593.
  • Andre, FE, Booy, R, Bock, HL, Clemens, J, Datta, SK, John, TJ, Lee, BW, Lolekha, S, Peltola, H, Ruff, TA, Santosham, M & Schmitt, HJ . 2008. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bulletin of the World Health Organization 86(2):140–146.
  • Organización de Naciones Unidas (Ed.) 2020b. Draft landscape and tracker of COVID-19 candidate vaccines.
  • Colleoni, Elanor, Rozza, Alessandro & Arvidsson, Adam . 2014. Echo chamber or public sphere? Predicting political orientation and measuring political homophily in Twitter using big data. Journal of Communication 64(2):317–332.
  • Tornos-Inza, E . 2020. Tasa de interacción (engagement) en Twitter. Related: Marketing
  • G., François,, Duclos, Philippe, Margolis, Harold, Lavanchy, Daniel, Siegrist, Claire-Anne, Meheus, Andr??, Lambert, Paul-Henri, N., Emiroglu,, Badur, Selim & Damme, Pierre Van . 2005. Vaccine safety controversies and the future of vaccination programs. The Pediatric Infectious Disease Journal 24(11):953–961.
  • M.J., Hornsey,, E.A., Harris, & K.S., Fielding, . 2018. The psychological roots of anti-vaccination attitudes: A 24-nation investigation. Health Psychology 37(4):307–315.
  • G.A., Poland, & Spier, Ray . 2010. Fear, misinformation, and innumerates: How the Wakefield paper, the press, and advocacy groups damaged the public health. Vaccine 28(12):2361–2362.
  • Brand, E & Gomez, H . 2006. Análisis de redes sociales como metodología de investigación. Elementos básicos y aplicación. Repositorio Institucional Universidad de Antioquia
  • Spier, R.E. . 2001. Perception of risk of vaccine adverse events: A historical perspective. Vaccine 20(1):S78–S84.
  • YouGov (Ed.) 2021. COVID-19 Public Monitor. COVID-19 Public Monitor
  • Cuesta-Cambra, Ubaldo, Martínez-Martínez, Luz & Niño-González, José-Ignacio . 2019. An analysis of pro-vaccine and anti-vaccine information on social networks and the internet: Visual and emotional patterns. Profesional de la Información 28.
  • T.E., Oliphant, . 2007. Python for scientific computing. Computing in Science & Engineering 9(3):10–20.
  • Subrahmanian, V.S., Azaria, Amos, Durst, Skylar, Kagan, Vadim, Galstyan, Aram, Lerman, Kristina, Zhu, Linhong, Ferrara, Emilio, Flammini, Alessandro & Menczer, Filippo . 2016. The DARPA Twitter Bot Challenge. Computer 49(6):38–46.
  • Micu, Adrian, A.E., Micu,, Geru, Marius & R.C., Lixandroiu, . 2017. Analyzing user sentiment in social media: Implications for online marketing strategy. Psychology & Marketing 34(12):1094–1100.
  • Bello-Orgaz, Gema, J., Hernandez-Castro, & Camacho, David . 2017. Detecting discussion communities on vaccination in Twitter. Future Generation Computer Systems 66:125–136.
  • Kouzy, Ramez, Jaoude, Joseph Abi, Kraitem, Afif, Alam, Molly B El, Karam, Basil, Adib, Elio, Zarka, Jabra, Traboulsi, Cindy, Akl, Elie & Baddour, Khalil . 2020. Coronavirus goes viral: Quantifying the COVID-19 misinformation epidemic on Twitter. Cureus (3) 12.
  • Graells-Garrido, E, Baeza-Yates, R & Lalmas, M . 2019. How representative is an abortion debate on Twitter. Proceedings of the 10th ACM Conference on Web Science - WebSci ’19 133–134.
  • Himelboim, Itai, Xiao, Xizhu, Lee, Danielle Ka Lai, Wang, Meredith Y. & Borah, Porismita . 2020. A social networks approach to understanding vaccine conversations on Twitter: Network clusters, sentiment, and certainty in HPV social networks. Health Communication 35(5):607–615.
  • D.K., Flaherty, . 2011. The vaccine-autism connection: A public health crisis caused by unethical medical practices and fraudulent science. Annals of Pharmacotherapy 45(10):1302–1304.
  • Ostertagova, E, Ostertag, O & Kovác, J . 2014. Methodology and application of the Kruskal-Wallis test. Applied Mechanics and Materials 611:115–120.
  • Dixon, G. & Clarke, C. . 2013. The effect of falsely balanced reporting of the autism-vaccine controversy on vaccine safety perceptions and behavioral intentions. Health Education Research 28(2):352–359.
  • Burnap, Pete, Gibson, Rachel, Sloan, Luke, Southern, Rosalynd & Williams, Matthew . 2016. 140 characters to victory? Using Twitter to predict the UK 2015 general election. Electoral Studies 41:230–233.
  • Broniatowski, David A., Jamison, Amelia M., Qi, SiHua, AlKulaib, Lulwah, Chen, Tao, Benton, Adrian, Quinn, Sandra C. & Dredze, Mark . 2018. Weaponized health communication: Twitter bots and russian trolls amplify the vaccine debate. American Journal of Public Health 108(10):1378–1384.
  • Callaway, E . 2020. Russia announces positive COVID-vaccine results from controversial trial. Nature .
  • Jolley, Daniel & Douglas, Karen M. . 2014. The effects of anti-vaccine conspiracy theories on vaccination intentions. PLoS ONE 9(2):e89177