Papel del sistema inmune en la infección por el SARS-CoV-2: inmunopatología de la COVID-19

  1. Monserrat Sanz, J. 1
  2. Gómez Lahoz, A.M. 2
  3. Oliva Martín, R. 2
  1. 1 Laboratorio de Enfermedades del Sistema Inmune. Departamento de Medicina y Especialidades Médicas. Facultad de Medicina. Universidad de Alcalá. Alcalá de Henares. Madrid. España Instituto de Investigación Sanitaria Ramón y Cajal (IRYCIS). Madrid. España
  2. 2 Laboratorio de Enfermedades del Sistema Inmune. Departamento de Medicina y Especialidades Médicas. Facultad de Medicina. Universidad de Alcalá. Alcalá de Henares. Madrid. España
Revista:
Medicine: Programa de Formación Médica Continuada Acreditado

ISSN: 0304-5412

Año de publicación: 2021

Título del ejemplar: Enfermedes del sistema inmune (VI)

Serie: 13

Número: 33

Páginas: 1917-1931

Tipo: Artículo

DOI: 10.1016/J.MED.2021.05.005 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado

Resumen

El sistema inmune es capaz de controlar adecuadamente la infección por el SARS-CoV-2 en un 81% de los pacientes, cursando de una forma asintomática o con sintomatología moderada; sin embargo, un 19% de los pacientes infectados sufren una enfermedad grave, que llega a convertirse en crítica y mortal. Este trabajo de revisión pretende proporcionar un repaso a los antecedentes epidemiológicos de los β-coronavirus, describir el mecanismo de infección del SARS-CoV-2 y resumir la base inmunológica racional que se conoce hasta la actualidad para permitir una mejor comprensión de la inmunopatología de la COVID-19. El virus SARS-CoV-2 es capaz de alterar profundamente el comportamiento de los componentes moleculares y celulares del sistema inmune. Las decisiones iniciales del sistema inmune innato son responsables de una correcta o inadecuada respuesta del sistema inmune adaptativo y, junto con las comorbilidades, están directamente asociadas a la progresión de la patología.

Referencias bibliográficas

  • Guarner J. Three emerging coronaviru-ses in two decades. Am J Clin Pathol. 2020;153(4):420-1.
  • Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak an update on the status. Mil Med Res. 2020;7(1):11.
  • Phelan AL, Katz R, Gostin LO. The novel coronavirus originating in Wuhan, China: Challenges for Global Health Governance. JAMA. 2020;323(8):709-10.
  • Paules CI, Marston HD, Fauci AS. Coronavirus infections more than just the common cold. JAMA. 2020;323(8):707-8.
  • Booz GW, Altara R, Eid AH, Wehbe Z, Fares S, Zaraket H. Macrophage responses associated with COVID-19: A pharmacological perspective. Eur J Pharmacol. 2020;887:173547.
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-42.
  • Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses. 2019; 11(1):59.
  • Zhong NS, Zheng BJ, Li YM, Poon, Xie ZH, Chan KH. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003; 362(9393):1353-8.
  • Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH. Isolation and characterization of a bat SARS like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535-8.
  • Zaki AM, van BS, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367(19):1814-20.
  • de WE, van DN, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016;14(8):523-34.
  • Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6.
  • Tay MZ, Poh CM, Renia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363-74.
  • Khan S, Siddique R, Shereen MA, Ali A, Liu J, Bai Q. Emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus 2: biology and therapeutic options. J Clin Microbiol. 2020;58(5):e00187-20.
  • Gómez Rial J, Rivero Calle I, Salas A, Martinon Torres F. Role of monocytes/macrophages in covid-19 pathogenesis: implications for therapy. Infect Drug Resist. 2020;13:2485-93.
  • Aggarwal NR, King LS, D’Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol. 2014;306(8):L709-L725.
  • Gracía Hernández M, Sotomayor EM, Villagra A. Targeting macrophages as a therapeutic option in coronavirus disease 2019. Front Pharmacol. 2020;11:577571.
  • Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue specific context. Nat Rev Immunol. 2014;14(2):81-93.
  • Morales Nebreda L, Misharin AV, Perlman H, Budinger GR. The heterogeneity of lung macrophages in the susceptibility to disease. Eur Respir Rev. 2015;24(137):505-9.
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958-69.
  • Montaño l, Fortoul t, Rendon P. What are inflammasomes? The NLRP3 as an example. BMJ. 2017;60:43-9.
  • Land WG. The role of damage associated molecular pattern in human diseases. Journal Medicine Qaboos University. 2014;15:09-21.
  • Yang, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41-56.
  • Otsuka R, Seino KI. Macrophage activation syndrome and CO-VID-19. Inflamm Regen. 2020;40:19.
  • Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-62.
  • Damasceno D, Teodosio C, van den Bossche WBL, Pérez Andres M, Arriba Mendez S, Muñoz Bellvis L. Distribution of subsets of blood monocytic cells throughout life. J Allergy Clin Immunol. 2019; 144(1):320-3.
  • Laforge M, Elbim C, Frere C, Hemadi M, Massaad C, Nuss P. Tissue damage from neutrophil induced oxidative stress in COVID-19. Nat Rev Immunol. 2020;20(9):515-6.
  • Barnes BJ, Adrover JM, Baxter Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med. 2020;217(6).
  • Wang J, Li Q, Yin Y, Zhang Y, Cao Y, Lin X. Excessive neutrophils and neutrophil extracellular traps in COVID-19. Front Immunol. 2020;11:2063.
  • Nathan C. Neutrophils and COVID-19: Nots, NETs, and knots. J Exp Med. 2020;217(9).
  • Tomar B, Anders HJ, Desai J, Mulay SR. Neutrophils and neutrophil extracellular traps drive necroinflammation in COVID-19. Cells. 2020; 9(6)1383.
  • Didangelos A. COVID-19 Hyperinflammation: What about neutrophils? mSphere. 2020;5(3):e00367-20.
  • Yaqinuddin A, Kvietys P, Kashir J. COVID-19: Role of neutrophil extracellular traps in acute lung injury. Respir Investig. 2020;58(5):419-20.
  • Conigliaro P, Triggianese P, Perricone C, Chimenti MS, Perricone R. COVID-19: disCOVering the role of complement system. Clin Exp Rheumatol. 2020;38(4):587-91.
  • Holter JC, Pischke SE, de BE, Lind A, Jenum S, Holten AR. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci U S A. 2020;117(40):25018-25.
  • van EC, Khan L, Osman MS, Cohen Tervaert JW. Natural killer cell dysfunction and its role in COVID-19. Int J Mol Sci. 2020; 21(17):6351.
  • Fang F, Xiao W, Tian Z. NK cell based immunotherapy for cancer. Semin Immunol. 2017;31:37-54.
  • Zheng M, Gao Y, Wang G, Song G, Liu S, Sun D. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol. 2020;17(5):533-5.
  • Osman M, Faridi RM, Sligl W, Shabani Rad MT, Dharmani Khan P, Parker A. Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19. Blood Adv. 2020;4(20):5035-9.
  • Manickam C, Sugawara S, Reeves RK. Friends or foes? The knowns and unknowns of natural killer cell biology in COVID-19 and other coronaviruses in July 2020. PLoS Pathog. 2020;16(8):e1008820.
  • Bortolotti D, Gentili V, Rizzo S, Rotola A, Rizzo R. SARS-CoV-2 Spike 1 protein controls natural killer cell activation via the HLA-E/NKG2A Pathway. Cells. 2020;9(9):1975.
  • Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and CO-VID-19. Cell. 2021;184(4):861-80.
  • Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A. Human leukocyte antigen susceptibility map for severe acute respiratory syndrome coronavirus 2. J Virol. 2020;94(13):e00510-20.
  • Paik J, Rakosi Smith R, liu J. The role of MHC System in COVID-19 susceptibility: a qualitative rewiev of current literature. BJM. 2020;13:32-8.
  • Romero López JP, Carnalla Cortes M, Pacheco Olvera DL, Ocampo Godinez JM, Oliva Ramírez J, Moreno Manjon J. A bioinformatic prediction of antigen presentation from SARS-CoV-2 spike protein revealed a theoretical correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican population: An ecological approach. J Med Virol. 2021; 93(4):2029-38.
  • Paces J, Strizova Z, Smrz D, Cerny J. COVID-19 and the immune system. Physiol Res. 2020;69(3):379-88.
  • Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ. 2020;371:m3939.