Cambios en el patrón de los usos digitales por el Covid-19. Aplicación del Learning Analytics a un estudio de caso entre estudiantes universitarios.
-
1
Universidad Complutense de Madrid
info
ISSN: 2013-9144
Año de publicación: 2021
Título del ejemplar: Number 39, June 2021 [Monographic] Techno-addiction among the young, adolescents and children
Número: 39
Páginas: 192-212
Tipo: Artículo
Otras publicaciones en: Digital Education Review
Resumen
La situación de excepcionalidad generada por la pandemia mundial COVD-19 ha obligado al uso masivo de herramientas digitales en todos los niveles educativos, evidenciando tanto desajustes en la carga docente para docentes y estudiantes en su adaptación, como la necesidad de observar con más detalle el proceso de aprendizaje que siguen los estudiantes. Este trabajo realiza una primera exploración de los cambios en los usos digitales de los estudiantes al pasar de la enseñanza presencial con apoyo del campus virtual a la online, según los registros o huellas que quedan al acceder a recursos virtuales. El estudio de caso se contextualiza en la asignatura de ELIMINADO PARA REVISION del segundo cuatrimestre del curso 2020, y describe tipologías y patrones de usos diferenciados antes y después de la declaración del estado de alarma nacional, con un efecto diferenciado, siendo los estudiantes del cuartil Q1 de la distribución quienes más reactivan su actividad digital, que ven una oportunidad de reengancharse en la docencia online, elementos que sirven de guía para una futura eventualidad.
Referencias bibliográficas
- Baker, R.S., Inventado, P.S. (2014). Educational data mining and learning analytics. In Learning Analytics; Springer: Berlin, Germany, pp. 61–75.
- Banihashem S.K., Aliabadi K., Ardakani S. P., Ahmadabadi M.N. y Delavar A. (2019) Investigation on the Role of Learning Theory in Learning Analytics. Interdisciplinary Journal of Virtual Learn Medical Sciences. 10(3):1-14. DOI: 10.30476/ijvlms.2019.84294.1001
- Banihashem S.K., Aliabadi K., Ardakani S.P., Delaver A., Ahmadabadi M.N. (2018) Learning analytics: A critical literature review. Interdisciplinary Journal of Virtual Learning in Medical Sciences. 2018; 9(2). https://dx.doi.org/10.5812/ijvlms.63024
- Bates, A.W. (T) (2015). Teaching in a Digital Age: Guidelines for designing teaching and learning for a digital age. University of British Columbia. https://opentextbc.ca/teachinginadigitalage/
- Berners-Lee, T., Hendler, J., y Lassila, O. (2001). The semantic web, Scientific American 284 (5): 28–37.
- Buckingham S. y Ferguson, R. (2012). Social Learning Analytics. Educational Technology & Society, 15 (3), 3-26. ISSN: 1436-4522. http://www.ifets.info/journals/15_3/2.pdf.
- Campbell, J. P. (2007). Utilizing Student Data within the Course Management System to Determine Undergraduate Student Academic Success: An Exploratory Study, PhD, Purdue University. Recuperado de https://docs.lib.purdue.edu/dissertations/AAI3287222/
- Campbell, J. P., DeBlois, P. B. y Oblinger, D. G. (2007). Academic analytics: A new tool for a new era. EDUCAUSE Review, 42(4), 40.
- Chick, R.C., Clifton, G.T., Peace, K.M., Propper, B.W., Hale D.F., Alseidi, A.A., y Vreeland, T.J. (2020) .Using Technology to Maintain the Education of Residents During the COVID-19 Pandemic, Journal of Surgical Education, Volume 77, Issue 4, pp.729-732, https://doi.org/10.1016/j.jsurg.2020.03.018
- Cocea, M. y Weibelzahl, S. (2007). Cross-system validation of engagement prediction from log files. Creating new learning experiences on a global scale. Springer Berlin Heidelberg, 14-25. https://link.springer.com/chapter/10.1007/978-3-540-75195-3_2
- Davis, K. (2012). Ethics of Big Data: Balancing Risk and Innovation. Ed. O'Reilly Media, Inc., USA, United States.
- Drachsler, H. y Greller, W. (2016). Privacy and Analytics – it's a DELICATE issue. A Checklist to establish trusted Learning Analytics. 6th Learning Analytics and Knowledge Conference 2016, April 25–29, 2016, Edinburgh, UK.
- Durall, E., y Gros, B. (2014). Learning analytics as a metacognitive tool. In Proceedings of 6th International Conference on Computer Supported Education Vol 1: CSEDU 380-384. https://www.scitepress.org/Link.aspx?doi=10.5220/0004933203800384
- Ferguson, R., Brasher A., Clow, D. y otros (2016). Research Evidence on the Use of Learning Analytics - Implications for Education Policy. Vuorikari y Castaño Muñoz (Eds.). Joint Research Centre Science for Policy Report; https://doi.org/10.2791/955210
- Fernández Enguita, M. (2020). Una pandemia imprevisible ha traído la brecha previsible. Recuperado de https:// bit.ly/2VT3kzU
- García-Peñalvo, F. J. (2020). El sistema universitario ante la COVID-19: Corto, medio y largo plazo. En: Universidad. Disponible en: https://bit.ly/2YPUeXU.
- García-Peñalvo, F. J., Corell, A., Abella-García, V., y Grande, M. (2020). La evaluación online en la educación superior en tiempos de la COVID-19. Education in the Knowledge Society, 21, 12. https://doi.org/10.14201/eks.23086
- Gašević D., Dawson S. y Rogers T. (2016). Learning analytics should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education. Jan 1; 28:68-84. https://doi.org/10.1016/j.iheduc.2015.10.002
- Gašević D., Dawson S., Siemens G.(2015). Let’s not forget: Learning analytics are about learning. TechTrends. 2015 Jan 1;59(1):64-71. https://doi.org/10.1007/s11528-014-0822-x
- Gros, B. (2016). The design of smart educational environments. Smart Learning Environments, 3(15), 1-11. https://doi.org/10.1186/s40561-016-0039-x
- Harrison, C. y Killion, J. (2007). Ten roles for teacher leaders. Educational Leadership, 65(1) (September) 74-77. http://www.ascd.org/publications/educational-leadership/sept07/vol65/num01/ten-roles-for-teacher-leaders.aspx
- Herodotou, C.; Rienties, B.; Verdin, B.; Boroowa, A. (2019). Predictive learning analytics ‘at scale’: Towards guidelines to successful implementation in Higher Education based on the case of the Open University UK. Journal of learning Analytics, 6, pp. 85-95. https://doi.org/10.18608/jla.2019.61.5
- Hodges, C.,Moore, S.,Lockee, B.,Trust, T. y Bond, A. (2020). The difference between emergency remote teaching and online learning. Educause Review. Recuperado de https://bit.ly/3b0Nzx7
- Iglesia, M. C. (2019). Learning Analytics para una visión tipificada del aprendizaje de los estudiantes. Un estudio de caso. Revista Iberoamericana de Educación, 80(1), 55-87. https://doi.org/10.35362/rie8013444
- Iglesia, M. C. (2020). Analítica de los usos digitales y rendimiento académico. Un estudio de caso con estudiantes universitarios. REIRE, Revista d'Innovació i Recerca en Educació, Vol. 13, Núm. 2 (2020). https://doi.org/10.1344/reire2020.13.229267
- Kay, D., Kom, N. and Oppenheim C. (2013). Legal, Risk and Ethical Aspects of Analytics in Higher Education. Analytics Series. Accessed January 3, https://web.archive.org/web/20130502234313/http://publications.cetis.ac.uk/wp-content/uploads/2012/11/Legal-Risk-and-Ethical-Aspects-of-Analytics-in-Higher-Education-Vol1-No6.pdf
- Knight S., Shum S.B., Littleton K. (2014). Epistemology, assessment, pedagogy:where learning meets analytics in the middle space. Journal of Learning Analytics. 2014 Aug 7;1(2): 23-47. https://doi.org/10.18608/jla.2014.12.3
- Li, Q.; Baker, R.; Warschauer, M. (2020). Using clickstream data to measure, understand, and support self-regulated learning in online courses. Internet Hight Education, 100727.
- Liz-Domínguez, M., Caeiro-Rodríguez, M., Llamas-Nistal, M., Mikic-Fonte, F.A. (2019). Systematic Literature Review of Predictive Analysis Tools in Higher Education. Applied. Science. 9, 5569.
- Lodge, J. M., y Corrin, L. (2017). What data and analytics can and do say about effective learning. Npj Science of Learning, 2(1). https://doi.org/10.1038/s41539-017-0006-5
- Long, Ph. y Siemens, G. (2011). Penetrating the Fog: Analytics in Learning and Education. EDUCAUSE Review, 46, 5, 30-40. https://er.educause.edu/articles/2011/9/penetrating-the-fog-analytics-in-learning-and-education
- Mazza, R. y Botturi, L. (2007). Monitoring an Online Course with the GISMO Tool: A Case Study. Journal of Interactive Learning Research (2007), 18 (2), 251-265.
- Mazza R. y Milani, C. (2004). GISMO: a Graphical Interactive Student Monitoring Tool for Course Management Systems. T.E.L.’04 Technology Enhanced Learning ’04 International Conference. Milan, 18-19 November 2004.
- OECD (2019). Benchmarking Higher Education System Performance; Paris, France, 2019; p. 644, https://doi.org/10.1787/be5514d7-en.
- Pardo, A. (2018). A feedback model for data-rich learning experiences. Assessment & Evaluation in Higher Education, 43(3), 428–438. https://doi.org/10.1080/02602938.2017.1356905
- Pardo, A. y Siemens, G. (2014). Ethical and privacy principles for learning analytics. British Journal of Educational Technology, 45(3), 438-450. https://doi.org/10.1111/bjet.12152
- Picciano, A. (2012). The Evolution of Big Data and Learning Analytics in American Higher Education. Journal of Asynchronous Learning Networks, 16(3), 9-20.
- Picciano, A. G. (2014) Big Data and Learning Analytics in Blended Learning Environments: Benefits and Concerns. International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 2, Nº 7, pp 35-43. http://doi.org/10.9781/ijimai.2014.275
- Prensky, M. (2013). Enseñar a nativos digitales (1a. ed). México: SM Ediciones.
- Ramos, C. y Yudko, E. (2008). “Hits” (not “Discussion Posts”) predict student success in online courses: A doublé cross-validation study. Computers & Education, 50(4):1174-1182. https://doi.org/10.1016/j.compedu.2006.11.003
- Romero, C., Ventura, S. y Garcia, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384. https://doi.org/10.1016/j.compedu.2007.05.016
- Sanger, D.E. y Perlroth, N. (2014). Internet Giants Erect Barriers to Spy Agencies. New York Times. (June 6, 2014) https://www.nytimes.com/2014/06/07/technology/internet-giants-erect-barriers-to-spy-agencies.html
- Sampson, D. (2017). Teaching and learning analytics to support teacher inquiry. In 2017 IEEE Global Engineering Education Conference (EDUCON 2017), Apr 25, 2017, Athens, Greece.
- Siemens G. (2013). Learning Analytics: The Emergence of a Discipline, American Behavioral Scientist. Vol 57(10), p.1380-1400, SAGE Publications. http://journals.sagepub.com/doi/abs/10.1177/0002764213498851?journalCode=absb
- Slade, S. y Prinsloo, P. (2013). Learning Analytics: Ethical Issues and Dilemmas. American Behavioral Scientist, 57 (10), 1510-1529. https://doi.org/10.1177%2F0002764213479366
- Stewart, C. (2017). Learning Analytics: Shifting from theory to practice. Journal on Empowering Teaching Excellence, 1(1), 95-105. https://doi.org/10.15142/T3G63W
- Tempelaar, D. (2020) Supporting the less-adaptive student: the role of learning analytics, formative assessment and blended learning, Assessment & Evaluation in Higher Education, 45:4, 579-593, https://doi.org/10.1080/02602938.2019.1677855
- Xing, W., Guo, R., Petakovic, E., y Goggins, S. (2015). Participation-based student final performance prediction model through interpretable Genetic Programming: Integrating learning analytics, educational data mining and theory. Computers in Human Behavior, 47, 168–181. https://doi.org/10.1016/j.chb.2014.09.034
- Yukselturk, E. Ozekes, S. y Turel, Y. K. (2014) Predicting Dropout Student: An Application of Data Mining Methods in an Online Education Program. European Journal of Open, Distance and E‐Learning, 17, 1, pp. 118-133. https://doi.org/10.2478/eurodl-2014-0008