The action of the groups Dm × Dn on unbordered Klein surfaces
- José Javier Etayo Gordejuela
- Ernesto Martínez García
ISSN: 1578-7303
Año de publicación: 2011
Volumen: 105
Número: 1
Páginas: 97-108
Tipo: Artículo
Otras publicaciones en: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas ( RACSAM )
Resumen
Every finite group G may act as an automorphism group of Klein surfaces either bordered or unbordered either orientable or non-orientable. For each group the minimum genus receives different names according to the topological features of the surface X on which it acts. If X is a bordered surface the genus is called the real genus ρ(G). If X is a non-orientable unbordered surface the genus is called the symmetric crosscap number of G and it is denoted by σ̃(G). Finally if X is a Riemann surface it has two related parameters. If G only contains orientation-preserving automorphisms we have the strong symmetric genus, σ0(G). If we allow orientation-reversing automorphisms we have the symmetric genus σ(G). In this work we obtain the strong symmetric genus and the symmetric crosscap number of the groups Dm × Dn. The symmetric genus of these groups is 1. However we introduce and obtain a new parameter, denoted by τ as the least genus g ≥2 of Riemann surfaces on which these groups act disregarding orientation. © 2011 Springer-Verlag.
Referencias bibliográficas
- Alling, N.L., Greenleaf, N., Foundations of the Theory of Klein Surfaces (1971) Lect. Not. in Math., 219. , Springer, Berlin
- Bujalance, E., Cyclic groups of automorphisms of compact non-orientable Klein surfaces without boundary (1983) Pac. J. Math., 109, pp. 279-289
- Etayo, J.J., (1983) Sobre grupos de automorfismos de superficies de Klein, Tesis Doctoral, , Universidad Complutense
- Etayo, J.J., Martínez, E., The real genus of cyclic by dihedral and dihedral by dihedral groups (2006) J. Algebra., 296, pp. 145-156
- Etayo, J.J., Martínez, E., The symmetric crosscap number of the groups Cm × Dn (2008) Proc. R. Soc. Edinburgh A, 138, pp. 1197-1213
- Gromadzki, G., Abelian groups of automorphisms of compact non-orientable Klein surfaces without boundary (1989) Comment. Math. Prace Mat., 28, pp. 197-217
- Gross, J.L., Tucker, T.W., (1987) Topological Graph Theory, , New York: Wiley
- Macbeath, A.M., The classification of non-Euclidean crystallographic groups (1967) Can. J. Math., 19, pp. 1192-1205
- May, C.L., The symmetric crosscap number of a group (2001) Glasgow Math. J., 41, pp. 399-410
- May, C.L., Zimmerman, J., There is a group of every strong symmetric genus (2003) Bull. Lond. Math. Soc., 35, pp. 433-439
- Preston, R., (1975) Projective Structures and fundamental domains on compact Klein surfaces, , Thesis. Univ. of Texas
- Singerman, D., Automorphisms of compact non-orientable Riemann surfaces (1971) Glasgow Math. J., 12, pp. 50-59
- Tucker, T.W., Symmetric embeddings of Cayley graphs in non-orientable surfaces (1991) Graph Theory, Combinatorics and Applications, pp. 1105-1120. , In: Alavy, I., et al. (eds.)
- Wilkie, H.C., On non-Euclidean crystallographic groups (1966) Math. Z., 91, pp. 87-102